Download your Full Reports for Gaming Consoles 

Gaming consoles have proved themselves to be the best in digital entertainment. Gaming consoles were designed for the sole purpose of playing electronic games and nothing else. A gaming console is a highly specialised piece of hardware that has rapidly evolved since its inception incorporating all the latest advancements in processor technology, memory, graphics, and sound among others to give the gamer the ultimate gaming experience.

Research conducted in 2002 show that 60% of US residents aged six and above play computer games. Over 221 million computer and video games were sold in the U.S. Earlier research found that 35% of U.S. residents surveyed said that video games were the most entertaining media activity while television came in a distant second at 18%. The U.S. gaming industry reported sales of over $ 6.5 billion in the fiscal year 2002-03. Datamonitor estimates that online gaming revenues will reach $ 2.9 billion by 2005. Additional research has found that 90% of U.S. households with children has rented or owned a computer or video game and that U.S. children spend an average of 20 minutes a day playing video games. Research conducted by Pew Internet and American Life Project showed that 66% of American teenagers play or download games online. While 57% of girls play online, 75% of boys reported to having played internet games. This has great impact on influencing online game content and multiplayer capability on websites.

The global computer and video game industry, generating revenue of over 20 billion U.S. dollars a year, forms a major part of the entertainment industry. The sales of major games are counted in millions (and these are for software units that often cost 30 to 50 UK pounds each), meaning that total revenues often match or exceed cinema movie revenues. Game playing is widespread; surveys collated by organisations such as the Interactive Digital Software Association indicate that up to 60 per cent of people in developed countries routinely play computer or video games, with an average player age in the mid to late twenties, and only a narrow majority being male. Add on those who play the occasional game of Solitaire or Minesweeper on the PC at work, and one observes a phenomenon more common than buying a newspaper, owning a pet, or going on holiday abroad.

Why are games so popular? The answer to this question is to be found in real life. Essentially, most people spend much of their time playing games of some kind or another like making it through traffic lights before they turn red, attempting to catch the train or bus before it leaves, completing the crossword, or answering the questions correctly on Who Wants To Be A Millionaire before the contestants. Office politics forms a continuous, real-life strategy game which many people play, whether they want to or not, with player-definable goals such as ?increase salary to next level?, ?become the boss?, ?score points off a rival colleague and beat them to that promotion? or ?get a better job elsewhere?. Gaming philosophers who frequent some of the many game-related online forums periodically compare aspects of gaming to real life?with the key difference being that when ?Game Over? is reached in real life, there is no restart option.

But why video games? Such entertainment and culture is not new, being available for home use for over 30 years. Rapid advances in graphics, processing power, game design and complexity have resulted in contemporary games rendering those of even just a few years ago crude and simplistic in comparison. Games are designed to sell, and therefore to be attractive, challenging, mind-engaging, stimulating, increasing curiosity, and inviting further exploration in addition to an urge for ?just one more go? - factors that have resulted in increased interest from the education, teaching and learning sectors.

Video games are most often found on video gaming consoles that plug into your television. These are produced by four well-known companies; Microsoft, which manufactures the XBox; Sony, which manufactures the PlayStation and the PlayStation 2; Nintendo, which manufactures the GameCube; and Sega, which manufactures the Dreamcast.

The PC is a major host of games, many of which make use of the standard keyboard and mouse input configuration for games such as strategy simulations. Other media devices, such as Interactive TV, handheld PCs and Palm Pilots, and the newer generations of mobile phone, play host to increasingly complex games?basically, where there is a processor and a screen, so there is the potential for games which is usually quickly filled.

It is important to note the increasing complexity of the aforementioned video gaming consoles, which increasingly resemble specialised, performance enhanced PCs - though without the cost, instability, long start-up waits, complexity and need for upgrades. The XBox, for example, contains a hard drive for saving game positions and tracks from your favourite CDs, which then form the background music of various games. These consoles also offer broadband capabilities for fast online gaming.

This particular area of the games sector is of great relevance to the library and information community. Online gaming has actually been around for quite a few years on the PC, and was successfully implemented through a game called Phantasy Star Online on the Dreamcast console. The more popular online games, such as Everquest, allow complex and simultaneous in-game interaction between many thousands (and sometimes tens of thousands) of people (irrespective of their physical location). In these games, people can exchange information and items, fight, move through a virtual world and observe the actions of others. Unfortunately, to date and to its loss, the informatics sector has not deeply investigated online gaming to see which techniques, technologies and concepts are transferable to systems using information access, discovery and management.

The last few years have seen an increase in the number of game-related courses in academic institutions, both in the UK and further afield. Most contain some element of game design or programming; demand comes from the large number of prospective game developers, and companies faced with the continuing shortage of skilled staff.

Skills gained on these courses are transferable to other technological areas, such as health and medicine (e.g. body, illness and drug action simulation), the military (strategic, battle and weapon simulation, without costly weapons or friendly-fire injuries), and business and management (economic and management simulations). Grades for admittance on such courses are usually high, and applications oversubscribed. In the UK, several universities are planning new game-related courses for the 2004 and 2005 academic years, with a few others already offering multimedia and game programming courses.

In addition to courses, a number of game-related research centres have emerged of late in institutions such as Albertay in Dundee, Liverpool John Moores, Bournemouth, Manchester, and Teeside. Numerous other game-related projects and research groups are scattered around universities and colleges.

It is important to note that academic research is not confined to the programming side of video games. Academic subjects increasingly involved with the gaming sector include:
? the arts (graphics and character design)
? music (soundtracks and special effects)
? history (providing accurate detail from factual events)
? geography (landscapes and settings)
? literature (plot and script construction)
? biology and the life sciences (accurate plant and animal growth and behaviour)
? sports sciences (how athletes run)
? built and urban sciences (building design and layout)
? engineering (vehicle dynamics and handling)
? sociology (effects of games on society)
? psychology (effects of games on the individual)

Such involvement has benefits for all parties. For academics, revenue is generated, staff kept on, and research used for practical purposes in the real world. Games companies receive relevant input, with the backing of academic expertise. Not surprisingly, this research has led to a steadily increasing collection of articles, papers and reports, which a growing number of people and organisations are attempting to categorise and index.

One of the most exciting areas where academia and the gaming sector overlap is that of education and learning. This can take one of two forms: using conventional computer and video games to enhance learning, or using gaming technologies and techniques to design and produce more effective learning software and material. A number of research groups and centres are making progress with various aspects of gaming and education, such as the E-GEMS group in Canada and the Games To Teach project at MIT. In the UK, TEEM (Teachers Evaluating Educational Multimedia) have investigated the use and educational value of computer games both at home and at school, while BECTa (British Educational Communications and Technology agency) have carried out similar investigations and produced guidelines on how computer games can support learning. It is encouraging to see an increasing number of educational and ICT(Information, Communication and Technology) funding bodies, such as the JISC (Joint Information Systems Committee) either monitoring or funding exploratory or research work in this area.

In addition to official exploration and research of non-gaming uses of computer and video games, and gaming consoles, there are plenty of people who take a great delight in ?making stuff do things it wasn't designed to do?. As soon as a video game console is released, a community of people determined to take it apart, write their own programs and increase the functionality, springs up. The hand-held GameBoy Advance, which is cheap and easy to develop software for (in an unofficial capacity), is the device of choice for many such developers. For example, one student has developed a web server on his GameBoy Advance as part of his final year undergraduate project. The Linux developer community has also tweaked the popular open source operating system to run on major game consoles like Microsoft XBox, Nintendo GameCube, Sega Dreamcast, and the Sony game consoles PlayStation and PlayStation 2.

Surprisingly, more women than men reported playing computer and online games (approximately 60% women compared to 40% men) while about the same number of men and women reported playing video games. Part of the reason why more women than men play computer games may be that video games are generally focussed on action and adventure (often violent in nature) while computer games are typically traditional games (for instance, solitaire and board games). Video games are often rigid in their game options and narrative structure. This research holds great implications for the world of game programming.

 Download your Full Reports for Gaming Consoles 


© 2013 All Rights Reserved.