

Blue eye technology

(blue eyes – Human operator monitoring system)

Agenda

- Motivation
- What is **BlueEye** technology?
- What is BlueEyes?
- System designing
- System overview
- DAU
- CSU
- Data security
- IBM research
- Conclusion

Motivation

- Human error a frequent reason of catastrophes and ecological disasters
 - temporal indisposition
 - weariness
 - oversight
- Monitoring of conscious

hrain involvement

 Lack of complex solution exploiting wireless link technology, database systems and AI algorithms

What is blue eye technology?

The BLUE EYES technology aims at creating computational machines that have perceptual and sensory ability like those of human beings.

How can we make computers "see" and

- Blue eyes uses sensing technology to identify a user's actions and to extract key information.
- Information is then analyzed to determine the user's physical ,emotional ,or informational state.

What is **Blue Eyes**?

- The complex solution for humanoperator monitoring:
 - Visual attention monitoring
 - Physiological condition
 - Operator's position detection
 - Wirelace data acquicition using bluetooth

What is BlueEyes not?

- Doesn't predict nor interfere with operator's thoughts
- Cannot force directly the operator to work

IBM research

- BLUE EYE EMOTIONAL MOUSE
- sensors in the mouse, sense the physiological attributes which are correlated to emotions using correlation model
- -by simply touching the mouse ,the computer will be able to determine a person's emotional state.
- BLUE EYE enabled TELEVISION could become active when the user makes an eye contact.

Physiological foundations

Human brain

<u>Preconscious brain</u>

- alogical
- "automatic"

Conscious brain

- manages the knowledge
- logical reasoning
- makes decisions

Conscious brain - operation

Exploratory mode

Planning mode

The eye movement sensor

- Off-shelf eye movement sensor Jazz multisensor
- Supplies raw digital data regarding
- Eye position
- Level of blood oxygenation
- Acceleration along horizontal and vertical axes
- Ambient light intensity

Eye movements

- Retina central vision (macula)
- Central vision and the conscious brain

Saccade - a rapid eye jump to a new location assigned by the conscious attention process.

Saccades presence

Exploratory mode

Jazz multisensor

Jazz Multisensor

Jazz

Design objectives

- A mobile data acquisition device
- A reliable real-time buffering, processing and recording
- A clear visualization interface
- Mechanisms for creating custom data analyzers
- To ensure a possibility of distributing the processing among a number of computers

Implementation and engineering

- -THREE groups of users
- OPERATOR -a person whose physiological parameters are supervised
 - authorization in the system
 - receiving alerts
- SUPERVISOR a person responsible for analyzing operator's condition and performance.
- SYSTEM ADMINISTRATORS- maintains the system deliver tools for adding
 - new operator's to the database
 - defining alarm conditions
 - configuring logging tools
 - creating new analyzer modules

Designing

- A personal area network for linking all the operators and the supervising system
- Two major units
- DAU (data acquisition unit)
- CSU (central system unit)

System overview

Data Acquisition Unit

Central System Unit

Bluetooth technology provides means for creating a Personal Area Network linking the operators and the central system.

DAU

The DAU consists of the following components

- ATMEL 8952 microcontroller
- BLUE TOOTH MODULE supports synchronous voice data transmission
- PCM CODEC –used to transmit operator's voice and central system sound feedback
- UART –communication between bluetooth module and microcontroller (115200 bps)
- MAX232 –level shifter
- ALPHAUNUMERIC LCD display
- LED indicators
- ID CARD interface

DAU - features

Data Acquisition Unit

- Lightweight
 - Runs on batteries low power consumption
- Easy to use does not disturb the operator working
- ID cards for operator authorization

DAU - components

Microcontroller & blue tooth module

EEPROMS & the PCB

Implementation - DAU

- Made from scratch by the team
- Bluetooth module inside
- Jazz sensor interface
- Microphone and earphone sockets
- 5-key keyboard
- Two lines, 8 characters LCD
- Powered from6 AA batteries

Implementation - DAU

CSU - features

- Connection management
- Data processing
- Visualization
- Data recording
- Access verification
- System maintenance

CSU - components

- CONNECTION MANAGER main task to perform low-level blue tooth communication
- DATA ANALYSIS MODULE performs the analysis of the raw sensor data in order to obtain information about operator's physiological condition
- DATA LOGGER MODULE provides support for storing the monitored data.
- VISULAIZATION MODULE provides user interface for the supervisors

CSU - Visualization Module

Raw and processed data visualization

using:

VU-meters

pie-charts

- time series

audio and vide data playback

CSU - saccade detector

Saccade detector and conscious brain involvement level calculation

Conscious brain involvement level

CSU - Connection Manager

CSU - Data Analysis

- Custom data analyzers decision tree based classifiers
 - Automatic decision tree coefficients generation C4.5 based algorithm

CSU - Data Analysis

 Custom data analyzers - decision tree based classifiers

Example: Operator gesture recognition (simplified)

CSU - intermodule communication

 Uses buffered thread-safe queues and producer-consumer scheme

CSU - intermodule communication

Implementation - CSU

- Standard MDI user interface
- Custom-built Bluetooth communication routines
- Intel USB camera
- ID card programmer
- Developed using Visual C++ 6.0
- Deployment environment: Windows 2000, MS SQL Server

Future improvements

DAU

small CMOS camera to monitor the operator's point of gaze single PCB (SMD technology) low voltage ICs - LiIO batteries power

CSU

data mining algorithms advanced database encryption using e.g. AES algorithm

Data security

- Only registered mobile devices can connect to the system
- Bluetooth connection authentication
- Bluetooth connection encryption
- Access rights restrictions
- Personal and physiological data encryption

Applications of Blue Eyes

- Generic control rooms
- (System can be applied in every working environment
- requiring permanent operator's attention)
 - Power station
 - Captain bridge
 - Flight control centers
 - Operating theatres anesthesiologists

Blue Eyes - benefits

- Prevention from dangerous incidents
- Minimization of
 - ecological consequences
 - financial loss
 - a threat to a human life
- The reconstruction of the course of operator's work

References

- www.seminar4u.com
- www.howstuffswork.com
- www.cs.put.poznan.com
- www.whitepapers.com
- www.ibmresearchcenter.com
- www.almaden.ibm.com

Conclusion

- In the near future ,ordinary household devices- such as television , refrigerators ,ovens may be able to do their jobs when we look at them and speak to them.
- Future applications of blue eye technology is limitless

You Jou