Cryptography

- Overview
- Symmetric Key Cryptography
- Public Key Cryptography
- Message integrity and digital signatures

References:
- Stallings
- Kurose and Ross

Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner
Cryptography issues

Confidentiality: only sender, intended receiver should “understand” message contents
- sender encrypts message
- receiver decrypts message

End-Point Authentication: sender, receiver want to confirm identity of each other

Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection
Friends and enemies: Alice, Bob, Trudy

- well-known in network security world
- Bob, Alice (lovers!) want to communicate “securely”
- Trudy (intruder) may intercept, delete, add messages
Who might Bob, Alice be?

- ... well, *real-life* Bobs and Alices!
- Web browser/server for electronic transactions (e.g., on-line purchases)
- on-line banking client/server
- DNS servers
- routers exchanging routing table updates
The language of cryptography

\[ m \text{ plaintext message} \]
\[ K_A(m) \text{ ciphertext, encrypted with key } K_A \]
\[ m = K_B(K_A(m)) \]
Simple encryption scheme

substitution cipher: substituting one thing for another

- monoalphabetic cipher: substitute one letter for another

plaintext:  abcdefghijklmnopqrstuvwxyz

<table>
<thead>
<tr>
<th>Plaintext: bob. i love you. alice</th>
</tr>
</thead>
<tbody>
<tr>
<td>ciphertext: mnbvcxzasdfghjklpoiuytrewq</td>
</tr>
</tbody>
</table>

E.g.: Plaintext: bob. i love you. alice
| ciphertext: nkn. s gktc wky. mgsbc |

Key: the mapping from the set of 26 letters to the set of 26 letters
Polyalphabetic encryption

- $n$ monoalphabetic cyphers, $M_1, M_2, \ldots, M_n$

- **Cycling pattern:**
  - e.g., $n=4$, $M_1, M_3, M_4, M_3, M_2$; $M_1, M_3, M_4, M_3, M_2$;

- For each new plaintext symbol, use subsequent monoalphabetic pattern in cyclic pattern
  - *dog*: d from $M_1$, o from $M_3$, g from $M_4$

- **Key:** the $n$ ciphers and the cyclic pattern
Breaking an encryption scheme

- Cipher-text only attack: Trudy has ciphertext that she can analyze

- Two approaches:
  - Search through all keys: must be able to differentiate resulting plaintext from gibberish
  - Statistical analysis

- Known-plaintext attack: trudy has some plaintext corresponding to some ciphertext
  - eg, in monoalphabetic cipher, trudy determines pairings for a,l,i,c,e,b,o,

- Chosen-plaintext attack: trudy can get the cyphertext for some chosen plaintext
Types of Cryptography

- Crypto often uses keys:
  - Algorithm is known to everyone
  - Only "keys" are secret
- Public key cryptography
  - Involves the use of two keys
- Symmetric key cryptography
  - Involves the use one key
- Hash functions
  - Involves the use of no keys
  - Nothing secret: How can this be useful?
Cryptography

- Overview
- Symmetric Key Cryptography
- Public Key Cryptography
- Message integrity and digital signatures

References:
Stallings
Kurose and Ross

Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner
Symmetric key cryptography

**symmetric key crypto:** Bob and Alice share same (symmetric) key: $K_S$

- e.g., key is knowing substitution pattern in monoalphabetic substitution cipher

**Q:** how do Bob and Alice agree on key value?
Two types of symmetric ciphers

- **Stream ciphers**
  - encrypt one bit at time

- **Block ciphers**
  - Break plaintext message in equal-size blocks
  - Encrypt each block as a unit
Stream Ciphers

- Combine each bit of keystream with bit of plaintext to get bit of ciphertext
- \( m(i) = \text{ith bit of message} \)
- \( ks(i) = \text{ith bit of keystream} \)
- \( c(i) = \text{ith bit of ciphertext} \)
- \( c(i) = ks(i) \oplus m(i) \) (\( \oplus \) = exclusive or)
- \( m(i) = ks(i) \oplus c(i) \)
Problems with stream ciphers

**Known plain-text attack**
- There’s often predictable and repetitive data in communication messages
- Attacker receives some cipher text $c$ and correctly guesses corresponding plaintext $m$
- $ks = m \oplus c$
- Attacker now observes $c'$, obtained with same sequence $ks$
- $m' = ks \oplus c'$

**Even easier**
- Attacker obtains two ciphertexts, $c$ and $c'$, generating with same key sequence
- $c \oplus c' = m \oplus m'$
- There are well known methods for decrypting 2 plaintexts given their XOR

**Integrity problem too**
- Suppose attacker knows $c$ and $m$ (eg, plaintext attack);
- wants to change $m$ to $m'$
- Calculates $c' = c \oplus (m \oplus m')$
- Sends $c'$ to destination
RC4 Stream Cipher

- RC4 is a popular stream cipher
  - Extensively analyzed and considered good
  - Key can be from 1 to 256 bytes
  - Used in WEP for 802.11
  - Can be used in SSL
Block ciphers

- Message to be encrypted is processed in blocks of $k$ bits (e.g., 64-bit blocks).
- 1-to-1 mapping is used to map $k$-bit block of plaintext to $k$-bit block of ciphertext

Example with $k=3$:

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>110</td>
</tr>
<tr>
<td>001</td>
<td>111</td>
</tr>
<tr>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>011</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>011</td>
</tr>
<tr>
<td>101</td>
<td>010</td>
</tr>
<tr>
<td>110</td>
<td>000</td>
</tr>
<tr>
<td>111</td>
<td>001</td>
</tr>
</tbody>
</table>

What is the ciphertext for 010110001111?
Block ciphers

- How many possible mappings are there for $k=3$?
  - How many 3-bit inputs?
  - How many permutations of the 3-bit inputs?
  - Answer: 40,320; not very many!

- In general, $2^k!$ mappings; huge for $k=64$

- Problem:
  - Table approach requires table with $2^{64}$ entries, each entry with 64 bits

- Table too big: instead use function that simulates a randomly permuted table
Prototype function

From Kaufman et al

Loop for n rounds

64-bit input

8bits S1 8bits S2 8bits S3 8bits S4 8bits S5 8bits S6 8bits S7 8bits S8

8 bits 8 bits

64-bit intermediate

64-bit output

8-bit to 8-bit mapping
Why rounds in prototype?

- If only a single round, then one bit of input affects at most 8 bits of output.
- In 2\textsuperscript{nd} round, the 8 affected bits get scattered and inputted into multiple substitution boxes.

How many rounds?

- How many times do you need to shuffle cards
- Becomes less efficient as \( n \) increases
Encrypting a large message

Why not just break message in 64-bit blocks, encrypt each block separately?

- If same block of plaintext appears twice, will give same cyphertext.

How about:

- Generate random 64-bit number \( r(i) \) for each plaintext block \( m(i) \)
- Calculate \( c(i) = K_S(m(i) \oplus r(i)) \)
- Transmit \( c(i), r(i), i=1,2,... \)
- At receiver: \( m(i) = K_S(c(i)) \oplus r(i) \)
- Problem: inefficient, need to send \( c(i) \) and \( r(i) \)
Cipher Block Chaining (CBC)

- CBC generates its own random numbers
  - Have encryption of current block depend on result of previous block
  - $c(i) = K_S(m(i) \oplus c(i-1))$
  - $m(i) = K_S(c(i)) \oplus c(i-1)$

- How do we encrypt first block?
  - Initialization vector (IV): random block = $c(0)$
  - IV does not have to be secret

- Change IV for each message (or session)
  - Guarantees that even if the same message is sent repeatedly, the ciphertext will be completely different each time
Symmetric key crypto: DES

**DES: Data Encryption Standard**
- US encryption standard [NIST 1993]
- 56-bit symmetric key, 64-bit plaintext input
- Block cipher with cipher block chaining
- How secure is DES?
  - DES Challenge: 56-bit-key-encrypted phrase decrypted (brute force) in less than a day
  - No known good analytic attack
- making DES more secure:
  - 3DES: encrypt 3 times with 3 different keys
    (actually encrypt, decrypt, encrypt)
Symmetric key crypto: DES

DES operation

- initial permutation
- 16 identical “rounds” of function application, each using different 48 bits of key
- final permutation
AES: Advanced Encryption Standard

- new (Nov. 2001) symmetric-key NIST standard, replacing DES
- processes data in 128 bit blocks
- 128, 192, or 256 bit keys
- brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES
Cryptography

- Overview
- Symmetric Key Cryptography
- Public Key Cryptography
- Message integrity and digital signatures

References:
- Stallings
- Kurose and Ross

*Network Security: Private Communication in a Public World*, Kaufman, Perlman, Speciner
Public Key Cryptography

**symmetric key crypto**
- requires sender, receiver know shared secret key
- Q: how to agree on key in first place (particularly if never “met”)?

**public key cryptography**
- radically different approach [Diffie-Hellman76, RSA78]
- sender, receiver do **not** share secret key
- **public** encryption key known to **all**
- **private** decryption key known only to receiver
Public key cryptography

plaintext message, \( m \) \rightarrow \text{encryption algorithm} \rightarrow \text{ciphertext} \rightarrow \text{decryption algorithm} \rightarrow \text{plaintext message} \( m = K_B^{-}(K_B^{+}(m)) \)

\( K_B^{+} \) Bob’s public key

\( K_B^{-} \) Bob’s private key
Public key encryption algorithms

Requirements:

1. need $K_B^+(\cdot)$ and $K_B^-(\cdot)$ such that $K_B^-(K_B^+(m)) = m$

2. given public key $K_B^+$, it should be impossible to compute private key $K_B^-$

**RSA:** Rivest, Shamir, Adelson algorithm
Prerequisite: modular arithmetic

- $x \mod n = \text{remainder of } x \text{ when divide by } n$
- **Facts:**
  1. $[(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n$
  2. $[(a \mod n) - (b \mod n)] \mod n = (a-b) \mod n$
  3. $[(a \mod n) \times (b \mod n)] \mod n = (a\times b) \mod n$
- Thus
  $$(a \mod n)^d \mod n = a^d \mod n$$
- **Example:** $x=14$, $n=10$, $d=2$:
  $(x \mod n)^d \mod n = 4^2 \mod 10 = 6$
  $x^d = 14^2 = 196 \quad x^d \mod 10 = 6$
RSA: getting ready

- A message is a bit pattern.
- A bit pattern can be uniquely represented by an integer number.
- Thus encrypting a message is equivalent to encrypting a number.

Example

- \( m = 10010001 \). This message is uniquely represented by the decimal number 145.
- To encrypt \( m \), we encrypt the corresponding number, which gives a new number (the cyphertext).
RSA: Creating public/private key pair

1. Choose two large prime numbers \( p, q \). (e.g., 1024 bits each)

2. Compute \( n = pq, \ z = (p-1)(q-1) \)

3. Choose \( e \) (with \( e < n \)) that has no common factors with \( z \). (\( e, z \) are “relatively prime”).

4. Choose \( d \) such that \( ed - 1 \) is exactly divisible by \( z \). (in other words: \( ed \mod z = 1 \)).

5. Public key is \((n, e)\). Private key is \((n, d)\).
RSA: Encryption, decryption

0. Given \((n,e)\) and \((n,d)\) as computed above

1. To encrypt message \(m < n\), compute
   \[ c = m^e \mod n \]

2. To decrypt received bit pattern, \(c\), compute
   \[ m = c^d \mod n \]

   **Magic happens!**
   \[ m = (m^e \mod n)^d \mod n \]
**RSA example:**

Bob chooses \( p=5, q=7 \). Then \( n=35, z=24 \).

- \( e=5 \) (so \( e, z \) relatively prime).
- \( d=29 \) (so \( ed-1 \) exactly divisible by \( z \)).

Encrypting 8-bit messages.

<table>
<thead>
<tr>
<th>bit pattern</th>
<th>( m )</th>
<th>( m^e )</th>
<th>( c = m^e \mod n )</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001000</td>
<td>12</td>
<td>24832</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( c )</th>
<th>( c^d )</th>
<th>( m = c^d \mod n )</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>481968572106750915091411825223071697</td>
<td>12</td>
</tr>
</tbody>
</table>
Why does RSA work?

Must show that \( c^d \mod n = m \)
where \( c = m^e \mod n \)

Fact: for any \( x \) and \( y \): \( x^y \mod n = x^{(y \mod z)} \mod n \)

where \( n = pq \) and \( z = (p-1)(q-1) \)

Thus,
\[
\begin{align*}
c^d \mod n &= (m^e \mod n)^d \mod n \\
&= m^{ed} \mod n \\
&= m^{(ed \mod z)} \mod n \\
&= m^1 \mod n \\
&= m
\end{align*}
\]
**RSA: another important property**

The following property will be *very* useful later:

\[
K_B^{-}(K_B^{+}(m)) = m = K_B^{+}(K_B^{-}(m))
\]

use public key first, followed by private key

use private key first, followed by public key

*Result is the same!*
Why $K_B^{-}(K_B^{+}(m)) = m = K_B^{+}(K_B^{-}(m))$?

Follows directly from modular arithmetic:

$$(m^e \mod n)^d \mod n = m^{ed} \mod n$$

$$= m^{de} \mod n$$

$$= (m^d \mod n)^e \mod n$$
Why is RSA Secure?

- Suppose you know Bob’s public key (n,e). How hard is it to determine d?
- Essentially need to find factors of n without knowing the two factors p and q.
- Fact: factoring a big number is hard.

Generating RSA keys

- Have to find big primes p and q
- Approach: make good guess then apply testing rules (see Kaufman)
**Session keys**

- Exponentiation is computationally intensive
- DES is at least 100 times faster than RSA

Session key, $K_S$

- Bob and Alice use RSA to exchange a symmetric key $K_S$
- Once both have $K_S$, they use symmetric key cryptography
Diffie-Hellman

- Allows two entities to agree on shared key.
  - But does not provide encryption
- \( p \) is a large prime; \( g \) is a number less than \( p \).
  - \( p \) and \( g \) are made public
- Alice and Bob each separately choose 512-bit random numbers, \( S_A \) and \( S_B \).
  - the private keys
- Alice and Bob compute public keys:
  - \( T_A = g^{S_A} \mod p \); \( T_B = g^{S_B} \mod p \);
Diffie-Helman (2)

- Alice and Bob exchange $T_A$ and $T_B$ in the clear
- Alice computes $(T_B)^{S_A} \mod p$
- Bob computes $(T_A)^{S_B} \mod p$
- shared secret:
  - $S = (T_B)^{S_A} \mod p = g^{S_A S_B} \mod p = (T_A)^{S_B} \mod p$
- Even though Trudy might sniff $T_B$ and $T_A$, Trudy cannot easily determine $S$.
- Problem: Man-in-the-middle attack:
  - Alice doesn’t know for sure that $T_B$ came from Bob; may be Trudy instead
  - See Kaufman et al for solutions
Diffie-Hellman: Toy Example

- $p = 11$ and $g = 5$
- Private keys: $S_A = 3$ and $S_B = 4$

**Public keys:**
- $T_A = g^{S_A} \mod p = 5^3 \mod 11 = 125 \mod 11 = 4$
- $T_B = g^{S_B} \mod p = 5^4 \mod 11 = 625 \mod 11 = 9$

**Exchange public keys & compute shared secret:**
- $(T_B)^{S_A} \mod p = 9^3 \mod 11 = 729 \mod 11 = 3$
- $(T_A)^{S_B} \mod p = 4^4 \mod 11 = 256 \mod 11 = 3$

**Shared secret:**
- $3 = \text{symmetric key}$
Cryptography

- Overview
- Symmetric Key Cryptography
- Public Key Cryptography
- Message integrity and digital signatures

References:
- Stallings
- Kurose and Ross

Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner
Message Integrity

- Allows communicating parties to verify that received messages are authentic.
  - Content of message has not been altered
  - Source of message is who/what you think it is
  - Message has not been artificially delayed (playback attack)
  - Sequence of messages is maintained

- Let’s first talk about message digests
Message Digests

- Function $H(\ )$ that takes as input an arbitrary length message and outputs a fixed-length string: "message signature"
- Note that $H(\ )$ is a many-to-1 function
- $H(\ )$ is often called a "hash function"

- Desirable properties:
  - Easy to calculate
  - Irreversibility: Can’t determine $m$ from $H(m)$
  - Collision resistance: Computationally difficult to produce $m$ and $m'$ such that $H(m) = H(m')$
  - Seemingly random output
Internet checksum: poor message digest

Internet checksum has some properties of hash function:

- produces fixed length digest (16-bit sum) of input
- is many-to-one

- But given message with given hash value, it is easy to find another message with same hash value.

- Example: Simplified checksum: add 4-byte chunks at a time:

<table>
<thead>
<tr>
<th>message</th>
<th>ASCII format</th>
<th>message</th>
<th>ASCII format</th>
</tr>
</thead>
<tbody>
<tr>
<td>I O U 1</td>
<td>49 4F 55 31</td>
<td>I O U 9</td>
<td>49 4F 55 39</td>
</tr>
<tr>
<td>0 0 . 9</td>
<td>30 30 2E 39</td>
<td>0 0 . 1</td>
<td>30 30 2E 31</td>
</tr>
<tr>
<td>9 B O B</td>
<td>39 42 D2 42</td>
<td>9 B O B</td>
<td>39 42 D2 42</td>
</tr>
</tbody>
</table>

Different messages but identical checksums!
Hash Function Algorithms

- MD5 hash function widely used (RFC 1321)
  - computes 128-bit message digest in 4-step process.
- SHA-1 is also used.
  - US standard [NIST, FIPS PUB 180-1]
  - 160-bit message digest
Message Authentication Code (MAC)

- $s = \text{shared secret}$

- **Authenticates sender**
- **Verifies message integrity**
- No encryption!
- Also called “keyed hash”
- Notation: $MD_m = H(s||m) ; \text{send } m||MD_m$
HMAC

- Popular MAC standard
- Addresses some subtle security flaws

1. Concatenates secret to front of message.
2. Hashes concatenated message
3. Concatenates the secret to front of digest
4. Hashes the combination again.
Example: OSPF

- Recall that OSPF is an intra-AS routing protocol.
- Each router creates a map of the entire AS (or area) and runs shortest path algorithm over map.
- Router receives link-state advertisements (LSAs) from all other routers in AS.

Attacks:
- Message insertion
- Message deletion
- Message modification

- How do we know if an OSPF message is authentic?
**OSPF Authentication**

- Within an Autonomous System, routers send OSPF messages to each other.
- OSPF provides authentication choices
  - No authentication
  - Shared password: inserted in clear in 64-bit authentication field in OSPF packet
  - Cryptographic hash

- Cryptographic hash with MD5
  - 64-bit authentication field includes 32-bit sequence number
  - MD5 is run over a concatenation of the OSPF packet and shared secret key
  - MD5 hash then appended to OSPF packet; encapsulated in IP datagram
End-point authentication

- Want to be sure of the originator of the message - *end-point authentication*.
- Assuming Alice and Bob have a shared secret, will MAC provide message authentication.
  - We do know that Alice created the message.
  - But did she send it?
**Playback attack**

\[ \text{MAC} = f(\text{msg}, s) \]

- Transfer $1M from Bill to Trudy
  - MAC

- Transfer $1M from Bill to Trudy
  - MAC
Defending against playback attack: nonce

\[ \text{MAC} = f(\text{msg}, s, R) \]

"I am Alice"

Transfer $1M from Bill to Susan

MAC
Digital Signatures

Cryptographic technique analogous to handwritten signatures.

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- Goal is similar to that of a MAC, except now use public-key cryptography
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document
Digital Signatures

Simple digital signature for message $m$:

- Bob signs $m$ by encrypting with his private key $K_B^-$, creating “signed” message, $K_B^-(m)$

Bob’s message, $m$

Dear Alice
Oh, how I have missed you. I think of you all the time! ... (blah blah blah)

Bob

$K_B^-$ Bob’s private key

$K_B^-(m)$ Bob’s message, $m$, signed (encrypted) with his private key

Public key encryption algorithm
Digital signature = signed message digest

Bob sends digitally signed message:

- Large message $m$
- $H$: Hash function
- $H(m)$
- Bob's private key $K_B^-$
- Digital signature (encrypt)
- Encrypted msg digest $K_B(H(m))$
- $+$
- $=$
- $\rightarrow$

Alice verifies signature and integrity of digitally signed message:

- Large message $m$
- $H$: Hash function
- $H(m)$
- Bob's public key $K_B^+$
- Digital signature (decrypt)
- $\rightarrow$
Digital Signatures (more)

- Suppose Alice receives msg m, digital signature $K_B(m)$
- Alice verifies m signed by Bob by applying Bob’s public key $K_B$ to $K_B(m)$ then checks $K_B(K_B(m)) = m$.
- If $K_B(K_B(m)) = m$, whoever signed m must have used Bob’s private key.

Alice thus verifies that:
- Bob signed m.
- No one else signed m.
- Bob signed m and not m’.

Non-repudiation:
- Alice can take m, and signature $K_B(m)$ to court and prove that Bob signed m.
Public-key certification

- **Motivation:** Trudy plays pizza prank on Bob
  - Trudy creates e-mail order:
    
    Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob
  - Trudy signs order with her private key
  - Trudy sends order to Pizza Store
  - Trudy sends to Pizza Store her public key, but says it’s Bob’s public key.
  - Pizza Store verifies signature; then delivers four pizzas to Bob.
  - Bob doesn’t even like Pepperoni
Certification Authorities

- **Certification authority (CA):** binds public key to particular entity, E.
- **E (person, router) registers its public key with CA.**
  - E provides “proof of identity” to CA.
  - CA creates certificate binding E to its public key.
  - certificate containing E’s public key digitally signed by CA
    - CA says “this is E’s public key”
Certification Authorities

- When Alice wants Bob’s public key:
  - gets Bob’s certificate (Bob or elsewhere).
  - apply CA’s public key to Bob’s certificate, get Bob’s public key

![Diagram showing the process of obtaining Bob's public key](image_url)
Certificates: summary

- Primary standard X.509 (RFC 2459)

  - Certificate contains:
    - Issuer name
    - Entity name, address, domain name, etc.
    - Entity’s public key
    - Digital signature (signed with issuer’s private key)

- Public-Key Infrastructure (PKI)
  - Certificates and certification authorities
  - Often considered “heavy”
Cryptography

- Overview
- Symmetric Key Cryptography
- Public Key Cryptography
- Message integrity and digital signatures

References:
- Stallings
- Kurose and Ross

Network Security: Private Communication in a Public World, Kaufman, Perlman, Speciner