Wireless Universal Serial Bus

NAME-CHANDAN KUMAR KAR
REGD NO. -0701216118
BRANCH- ETE
PADMANAVA COLLEGE OF ENGINEERING, ROURKELA
Outline

- Wired Universal Serial Bus (USB)
- Overview of Wireless USB (wUSB)
 - History/Vision
 - Features
- How wUSB Works
 - Design
 - Security
- Issues/Limitations
- Current Implementations
- Future/Conclusion
Wired USB

○ Overview
 ● Plug/Play standard for peripheral devices
 ● Standardized by the USB Implementers Forum

○ Technical Details
 ● Host/Slave Connection
 ○ PC (host) manages all transfers; peripherals (slave) just responds
 ○ Supports 127 slaves per host
 ● Physical Connection
 ○ Four wire connection
 ● Two wires for power (+5 and GND)
 ● Two wires (twisted pair) for synchronous serial data
 ○ Computer supplies power (up to 500 mA)
Wired USB

- Technical Details (Cont.)
 - Data Rates
 - Low Speed: 1.5 Mbps (Keyboards, mice, etc.)
 - Full Speed: 12 Mbps (USB1.1 max speed)
 - Hi-Speed: 480 Mbps (USB2.0 max speed)
Reasons For Wireless USB

- **Wired Issues**
 - Wires are restrictive
 - Multiple wires can be a hassle
 - Wires slower than wireless solutions

- **Current wireless solutions inadequate**
 - Bluetooth
 - Bandwidth of 3 Mbps not enough for higher demand applications (Video, HDTV, Monitor)
 - WiFi
 - Expensive
 - Too much power usage for mobile devices
Data Rate Comparisons

<table>
<thead>
<tr>
<th>Home Activity</th>
<th>Mbps</th>
<th>Bandwidth Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple, simultaneous VoIP calls</td>
<td>0.1 - 0.2</td>
<td></td>
</tr>
<tr>
<td>Phone Text browsing (WAP)</td>
<td>0.1 - 0.5</td>
<td></td>
</tr>
<tr>
<td>Streaming whole-home audio</td>
<td>0.2 - 0.5</td>
<td></td>
</tr>
<tr>
<td>Static Web surfing on PC</td>
<td>0.2 - 0.5</td>
<td></td>
</tr>
<tr>
<td>Streaming video onto phone</td>
<td>0.2 - 3</td>
<td></td>
</tr>
<tr>
<td>Streaming SD Video onto TV</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Streaming Multiple HD Videos on TV's</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Multiple PC-Based LAN applications **</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Theoretical Maximum</td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

* Based on existing applications
** Such as file transfers, storage, background IT applications, etc.

Source: Texas Instruments - Internal Analysis
Wireless USB Overview

- **Overview**
 - Has evolved as companies figured out standards
 - Based on Ultra-Wideband (UWB) RF technology
 - UWB is a technology for transmitting data over a large bandwidth (>500 MHz)

- **History of Ultra-Wideband (UWB)**
 - Late 1800s: Started with Spark Gap radio for transmitting Morse Code
 - 1924: Spark Gap forbidden due to disruptive nature to narrowband carrier radios
 - 1960s – 1999s: Better test equipment promoted research of UWB for radar and communications
Wireless USB Overview

- History of Ultra-Wideband (cont.)
 - April 2002: FCC issued UWB Regulations
 - Permitted marketing and operation of new products
 - Limited power and freq range
 - 2002: Two standards emerge
 - Orthogonal Frequency Division Multiplexing (OFDM) UWB
 - WiMedia Alliance & Intel
 - Direct Sequence (DS) UWB
 - UWB Forum & Freescale
 - 2006: DS-UWB loses support & OFDM-UWB wins
 - Freescale left UWB Forum; became quiet
 - Many companies dropped Freescale chips
 - Freescale trying proprietary “Cable-Free USB”
 - 2007: Products begin to hit the market
Wireless USB Overview

- Goals of Intel OFDM-UWB Wireless USB Standard
 - Wireless version of USB; same features, speeds
 - Interoperable across three major platforms
 - Consumer Electronic devices (digital video/audio)
 - Mobile devices (cellular phones, PDA)
 - Personal Computing (laptop, PC, printer, peripherals)
 - High bandwidth to support demanding data transfer (High Definition, Monitors)
 - Mobile friendly
 - Low power usage
 - Inexpensive costs
 - Small physical implementation
 - High level of security
 - Next gen Wireless Personal Area Network (WPAN)
Wireless USB Vision
Wireless USB Physical Design

○ Features of UWB
 ● Speed/Range
 ○ Scaleable speeds up over 1 Gbps
 ○ Currently 480 Mbps at 3 m; 110 Mbps at 10 m
 ● Frequency: 3.1 GHz to 10.6 GHz
 ○ Divided into 14 bands; 5 groups
 ● Each band is 528 MHz wide
 ● OFDM symbols are interleaved across all bands
 ● Provides protection against multi-path / interference
Wireless USB Physical Design

○ Features of UWB (cont.)
 ● Frequency: 3.1 GHz to 10.6 GHz (cont.)
 ○ Band Groups 1 & 2: Longer range apps
 ○ Bands Groups 3 & 4: Shorter range apps
 ○ Bands can be turned off to accommodate for conflicts or for regulations

![Diagram of wireless USB bands]

- Band Group #1
- Band Group #2
- Band Group #3
- Band Group #4
- Band Group #5

- 3432 MHz to 3960 MHz
- 4488 MHz to 5016 MHz
- 5544 MHz to 6072 MHz
- 6600 MHz to 7128 MHz
- 7656 MHz to 8184 MHz
- 8712 MHz to 9240 MHz
- 9768 MHz to 10296 MHz
Wireless USB Physical Design

- Features of UWB (cont.)
 - Power
 - Power is limited due to usage of wide spectrum
 - Low power for mobile devices and minimum interference
 - Max output to -41.3 dBm/MHz

Diagram:
- Frequency Range
- SS = Spread Spectrum
- NB = Narrowband
- UWB = Ultra-Wideband
Wireless USB Security Design

- **Overview**
 - Strongly stressed in wUSB specification and outlined in its own requirements document
 - Security needed due to crowded environments
 - Two major components: Association and Encryption

- **Association**
 - Overview
 - Device must first associate with the host in a one-time event
 - Accomplished via wired verification or numeric association
Wireless USB Security Design

- Association (cont.)
 - Wired Verification
 - Cable is attached between devices
 - Exchanges a unique 384-bit identifier known as the "connection context"
 - Numeric Association
 - Devices associate wirelessly
 - User must enter a hex code manually
Wireless USB Security Design

- **Encryption**
 - Data encrypted with the AES 128 algorithm
 - During each session devices derive a session key based on “connection context”
 - Wireless data is encrypted using session key
 - Does not encrypt PHY and MAC headers
Wireless USB Connection Design

- **Host/Slave Connection**
 - Similar to wired USB (127 devices; host is PC)
 - Each host forms a cluster
 - Clusters can coexist with minimum interference

- **Power Management**
 - Sleep/Listen/Wake used to conserve power
 - Tx/Rx power management
Wireless USB Issues/Problems

- **Interference Issues**
 - Potential conflict to devices on same frequencies
 - “Detect and Avoid”
 - Wisair’s solution to detect other frequencies
 - Switches to frequencies not being used
 - Conflict issues are more of a concern for wireless USB devices being overpowered

- **Competing Standards**
 - Cable-Free USB (Freescale)
 - USB-Implementers Forum (Intel, HP, Microsoft)
Wireless USB Implementations

- **Belkin Cable Free Hub**
 - Released Dec, 2006
 - Dongle attaches to PC
 - Retail price of $199.00
 - Speeds up to 480 Mbps
Wireless USB Implementations

- Gefen HMDI Extender
 - Coming soon...
 - Based on WiMedia Alliance specification
 - Retail price of $699.00
 - Range of 20 meters; data rates up to 480 Mbps
 - Frequency band: 3.1 - 4.8 GHz
 - Resolution support: 480i, 480p, 720p, and 1080i
Wireless USB Implementations

- Seagate Wireless USB Hard Drive
 - Coming soon...
 - 2.5 inches wide
 - Speeds up to 480 Mbps
Future of Wireless USB

- **Early 2007**
 - Initial devices being produced

- **Late 2007**
 - Expect wUSB being built into laptops, PCs, multimedia devices

- **2008**
 - Visiongain research firm predicts increase of wUSB by 400 percent

- **2009-2010**
 - Wide scale interoperability?
Concluding Thoughts

- Appears well designed; good support
- Slow start of products
 - Will it really catch on?
 - More products need to be developed
- Promises a lot; will it deliver?
- Security is very important
THANK YOU