LANDMINE DETECTION USING RADAR

B. Tech. Seminar Report

BY

PRATYUSH VAID (06412)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
HAMIRPUR-177005, HP (INDIA)

November, 2009
LANDMINE DETECTION USING RADAR

A Seminar Report

Submitted in partial fulfillment of the
Requirement for the award of the degree

Of

Bachelor of Technology

In

ELECTRONICS & COMMUNICATION ENGINEERING

BY

PRATYUSH VAID (06412)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
NATIONAL INSTITUTE OF TECHNOLOGY
HAMIRPUR-177005, HP (INDIA)

November, 2009
Abstract - Landmines are affecting the lives and livelihood of millions of people around the world. The video impulse ground penetrating radar system for detection for small and shallow buried objects has been developed. The hardware combines commercially available components with components specially developed or modified for being used in the system. The GPR system has been desired to measure accurately electromagnetic field backscattered from subsurface targets in order to allow identification of detected targets through the solution of the inverse scattering problem. The GPR has been tested in different environmental conditions and has proved its ability to detect small and shallow buried targets.

I. INTRODUCTION

Landmines and unexploded ordnance (UXO) are a legacy of war, insurrection, and guerilla activity. Landmines kill and maim approximately 26,000 people annually. In Cambodia, whole areas of arable land cannot be farmed due to the threat of landmines. United Nations relief operations are made more difficult and dangerous due to the mining of roads. Current demining techniques are heavily reliant on metal detectors and prodders.

Technologies are used for landmine detection are:

i. Metal detectors capable of finding even low-metal content mines in mineralized soils.

ii. Nuclear magnetic resonance, fast neutron activation and thermal neutron activation.

iii. Thermal imaging and electro-optical sensors detect evidence of buried objects.

iv. Biological sensors such as dogs, pigs, bees and birds.

Landmines are of two types Anti-tank (AT) and antipersonnel (AP) landmines which require close approach or contact to activate. AT mines range from about 15 to 35 cm in size. They are typically buried up to 40cm deep, but they can also be deployed on the surface of a road to block a column of machinery. AP mines range from about 5 to 15cm in size. AT mines which are designed to impede the progress of destroy vehicles and AP mines which are designed to kill and maim people.

The GPR (Ground Penetrating Radar) is ultra wide band radar provides centimeter resolution to locate even small targets. There are two distinct types of GPR, time-domain and frequency domain. Time domain or impulse GPR transmits discrete pulses of nanosecond duration and digitizes the returns at GHz sample rates. Frequency domain GPR systems transmit single frequencies either uniquely, as a series of frequency steps, or as a chirp. The amplitude and phase of the return signal is measured. The resulting data is converted to the time domain. GPR operates by detecting the dielectric contrasts in the soils, which allows it to locate even non metallic mines.

II. WORKING

2.1. Antenna System

The antenna system is one of the most critical parts of GPR system, because its performance depends strongly on the antenna system. The antenna system should satisfy a number of demands. The antenna system contains transmitter and receiver.
The transmit antenna should:

i. Radiate short ultra-wide band (UWB) pulse with small ringing.

ii. Radiate electromagnetic energy within a narrow cone in order to filter out undesirable backscattering from surrounding objects.

iii. Produce an optimal footprint on the ground surface and below it.

iv. The waveform of the radiated field on the surface and in the ground should be the same.

v. The waveform of the radiated field in the ground should not depend on the type of the ground.

The receiver antenna should:

i. Allow time windowing to isolate the direct air wave from the ground reflection.

ii. Provide sufficient sensitivity in order to receive very weak fields.

iii. Receive the field in a local point; effective aperture should not be larger than 1 cm².

iv. Be elevated at least 10 cm above the ground surface.

v. Additionally, a possibility to measure simultaneously backscattered field in two orthogonal polarizations is desirable.

2.2. Processor

A/D converter converts the signal into digital signal which passes to the processor. Processor filters the signal. This signal shows presence or absence of surrogate mine in the soil. Processor allows passing the presence of mine detecting signal. Processor selects the mine detecting signal and passes to the visual display.

2.3. Ground Penetrating Radar

Due to the difficulty in detecting the tiny amounts of metal in a plastic landmine with a metal detector, technology development has been funded in other areas. Ground penetrating radar (GPR) has been used for nearly 70 years for a variety of geophysical subsurface imaging applications including utility mapping and hazardous waste container location and has been actively applied to the problem of landmine detection for nearly 20 years. When parameters such as frequency range, antenna size, antenna separation, and system timing are optimized for detection of mine-sized objects in the near subsurface, GPR is quite effective in detecting both metal and plastic landmines in a variety of soils. The depth of penetration is a function of both the frequency range produced and the soil attenuation. Lower frequency components penetrate further, but it is a higher-
frequency component that is necessary to image and resolve smaller targets. Both impulse-based and swept frequency GPR systems have been employed in Army-sponsored research programs. Generally a system with a bandwidth of roughly 1 to 4GHz is effective for detection of landmines.

Ultimately, GPR images the dielectric properties of the soils, and any discontinuities appear as a signal. If soil were perfectly homogeneous, a discontinuity caused by a land mine would stand out as an anomaly against the background. Unfortunately, even under near-ideal test track conditions, soil itself is a remarkably inhomogeneous medium, and false alarms are easily generated from the background itself.

Because of this, automatic target recognition (ATR) algorithms employed by impulse-based GPR systems typically calculate and remove background and try to detect the hyperbolic signatures that are characteristic in size and shape of landmine targets in GEO-CENTERS 400 Series energy in focusing ground penetrating radar (EFGPR), we employ a fuzzy logic-based algorithm that use prototypes, or feature sets, for landmines, and prototypes than to clutter. At each location in a data set, we look inside a neighborhood of adjacent points, extract a feature set, and calculate if the features set is closer to the mine prototypes. The output is a plan view of the confidence, at each point along a test lane, that there is a land mine. A blob detector then runs on this confidence plane view, outputting target reports when a blob is of an appropriate size and shape.

Although GPR has been shown to be effective on the test track against a variety of land mines in a range of soil conditions, it is technologically complex. The weight and power requirements are not overwhelming, but they make GPR most easily deployed on a vehicular platform. Through NVESD at Fort Belvoir, the U.S Army is deploying GPR in a variety of hand held and vehicular land mine detection technology development programs.

III. OVERVIEW OF THE SYSTEM

A series of measurements has been taken using a set of targets buried in the various types of soil. An FR-127-MSCB impulse ground penetrating radar (ImGPR) system developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia, has been used for these measurements. The system collects 127 returns, or surroundings, per second, each composed of 512 samples with 12 bit accuracy. The sounding range may vary from 4 ns to 32ns. The GPR system uses bi-static bow-tie antennas which transmit wideband, ultra short duration pulses.

The GPR unit is suspended above the ground surface at a height of between 0.5 to 2cm. Its motion is controlled by a stepper motor unit running along a track at a constant velocity as shown in fig.4. Since the motion of the GPR is controlled by a stepper motor, with constant speed, running on a straight track, these samples corresponds to distances from starting point of the run. GPR images the dielectric properties of the soil and any discontinuities appear as a signal. If the soil were perfectly homogeneous a discontinuity caused by a land mine would stand out as an anomaly against the background. Automatic targets recognition (ATR) algorithms employed by impulse based GPR system. The measurements form a two dimensional matrix, referred to as a radar gram or B scan and A scan are
used for visual inspection of data on the acquisition computer and in laboratory analysis.

3.1. A-Scan
Impulse GPR produces measurements of electromagnetic field scattered from the subsurface. A scan is a method for detecting the presence and absence of surrogate mine in clay soil. The electromagnetic field is scattered by the GPR. Scattering pulses are detecting by the graph. This graph is Amplitude Vs Time. This graph is helpful to find the landmine and is used for visual inspection. The normal pulses are showing the absence of mines. The amplitude of the pulses are large as compared to other area. This shows the presence of mine. So we can detect the presence of mine in that clay soil. The figure 2 shows the graph of A scan.

3.2. B-Scan
A scan shows the presence of mine but we cannot expect the exact target. This problem is solving in B scan. B scan or Radar gram is used to visualize the target of surrogate mine. A sample radar gram is shown in figure. This showing the targets at approximately 55 cm and 100 cm. B scan calculating the distance from the soil to the mine. In this sample radar gram showing the exact position. A scan and B scan is used for laboratory analysis. A return at a certain position along the distance axis is called an A scan. B scan is a graph which is Time delay Vs Distance. So B scan helps to calculate the penetration length. This graph helps to calculate the distance from ground to the mine.

Figure 2: A Scan

Figure 3: B Scan

IV. SIGNAL CLUTTER

The sources of clutter particularly includes multiple reflections between the rough surface of the soil and antenna, reflections internal to antenna and reflections from the soil due to radiation from the open ends of the antenna. Fortunately, the frequency components and magnitude distributions of most clutter can be assumed as wide-sense stationary processes and they have slowly varying values along a B-scan frame. The clutter resulting from the interactions mentioned may be defined as slowly varying strong background signals included in a raw GPR data.

The received signal at the receiver is given by \(w = c + b + s + e \) where
Clutter is due primarily to ground bounce and antenna cross-talk.

V. CLUTTER REDUCTION

The clutters can be removed by the following ways

i. Mean subtraction.

ii. Interference cancellation.

5.1. Mean subtraction

In mean subtraction method all the signals of the B-scan (figure 5) is taken and the mean of the common signal is subtracted from it so as to get a proper view of the landmine’s location (figure 6). This is only possible for the homogeneous medium.

5.2. Interference cancellation

In the interference cancellation technique the B-scan (figure 7) is taken and then the mean subtraction is done (figure 8). After that interference is calculated by taking the mean of all the pervious data and from the calculation of the interference of the surrounding the mean subtracted data is again subtracted so as to get the new data which gives us a fair good idea about the location of the landmine (figure 9).
VI. PROPERTIES OF THE MEDIUM

6.1. Relative Dielectric Permittivity (RDP)

The relative dielectric permittivity of a medium is given by the formula:

\[\text{RDP} = \left(\frac{c}{V} \right)^2 \]

where

- c: speed of light in a vacuum (\(3 \times 10^8\) m/s)
- V: velocity of radar wave through the medium

The RDP ranges from 1 (air) to 81 (water) and it is taken relative to the content of water i.e. higher is the content of water in any medium higher is its RDP.

6.2. Conductivity (\(\sigma\))

The conductivity of the medium affects the penetration of the waves in the medium i.e. higher the conductivity more is the attenuation or the penetration of the radar waves into the medium. The conductivity of the medium increases with increase in the moisture of the medium, so if the medium has higher content of water then the attenuation of the medium for the radar waves will increase.

VII. DEPLOYMENT PLATFORM

US army hand held standoff mine detection system that is a self propelled cart with GPR system. As technological development for land mine detection tends to be a vehicular based system. This vehicular based system is shown in figure 10. This vehicle is self propelled so it can use in war places. This is a vehicular based system because vehicle can carry the weight and supply the power. This does not mean, though, that handheld systems are limited to metal detectors. There are platforms that are smaller than full vehicles but larger than man deployable devices. This vehicle comprises a pulse generator, transmitter, receiver, pulse extender, A / D converter,
This vehicle is passing through the soil, the pulse generator produces pulses and the transmitter transmits this signal to the ground. The soil contains the land mine, the receiver receives the ground reflecting signal. The soil contains presence of land mine, passes to the visual display. This visual display helps to display the exact target of land mine. This helps to calculate the distance from the soil to the mine. This system is very useful to the war places. This vehicle is self propelled so it can make easy detection.

VIII. TESTING AND EVALUATION

The U.S Army performs objective blind and scored testing at their testing facilities, which include carefully constructed mine lines. In this testing and evaluation environment, land mines are live (filed with explosive) because certain detection technologies such as Quadruple Resonance rely on detection of the actual explosive charge. However, on this test lines, the mines are infused and thus do not detonate if they are run over by detection system. Dirt and gravel lanes are maintained. Typically, the lanes are very smooth, largely free of bumps and ditches that would cause the sensor arrays to maintain an inconsistent sensor height that would substantially affect data quality. Off-road lanes are also used. They are not as pristine as dirt or gravel lanes but are still a substantially more controlled environment than a Jeep train through the Khyber Pass.

Each lane has an associated calibration lane where the ground truth is known and contactors may run and rerun their system to iteratively optimize detection performance. GPR systems typically need calibration or timing alignment, and infrared cameras generally need bore sighting. The feature extraction and ATR algorithms on the individual sensor subsystems usually need to be tweaked to maximize the detection rate and minimize the false alarm rate for the particular environment. This can entail adjusting detection thresholds or determining optimum blob sizes. When acceptable performance is achieved on the calibration lane, the contractor is ready to run the blind, scored section of the lane.

IX. ADVANTAGES

i. GPR has accurate measurements.
ii. GPR locates even small targets.
iii. It has been well founded by the defense.
iv. GPR operates by detecting the dielectric soils which allows it to locate even no metallic mines.
v. Biological sensors can only operate for limited periods, but in GPR has no such limits.
vi. GPR has been tested in different environmental conditions.

X. DISADVANTAGES

i. The sensor such as GPR is larger and heavier.
ii. It is plagued with the problem of excessive signal clutter.
iii. GPR is more power hungry.
iv. GPR can suffer false alarm rates as high as metal detectors.

XI. SUMMARY

Impulse GPR system is using for detecting anti-tank and antipersonnel mines. Anti-tank mines are using for destroying the vehicles and antipersonal mines, which are designed to kill and maim people. Currently, very little technology is used in real-world demining activities. Active programs by the U.S Army in both land mine detection sensor development and systems integration are evaluating new technologies, incrementally improving existing technologies, increasing the probability of detection, reducing the false alarm rate, and planning out useable deployment scenarios. Through iterative design, build test cycles, and blind and scored testing at Army mine lanes, steady progress is being made.

ACKNOWLEDGEMENT

The author is thankful to the management of National Institute of Technology, Hamirpur, for their guidance and support. The author gratefully acknowledges the support and constant encouragement of the HOD and the Faculty of E&CED, NIT Hamirpur. Finally he would like to thank his parents for their love and blessings, which have been instrumental in the compilation of this report.

REFERENCES

