Chapter 1 – Introduction to Artificial Intelligence
In this first chapter, we attempt to define what we mean by the term “Artificial Intelligence” and to give a brief history of the subject.

What AI is not

First we must state a disclaimer that may be important in Georgia and other agricultural states.  This author was a part of a conversation in which the use of AI on the farm was a central topic.  Fortunately, before he made a fool of himself, this author recalled another meaning for AI – “Artificial Insemination”, a process that it is quite important for breading good strains of cattle and other farm animals.  We shall have enough problems when restricting AI to its computational context, so we avoid the biology.

1.1

Intelligent Machines
If we are to study the field of artificial intelligence, we must immediately face a number of questions.  The most obvious is question number 1.


1)
What does it mean for a person to be intelligent?


2)
What would it mean for a machine to be intelligent?

3)
(Rarely asked) Does artificial intelligence mean mimicking human intelligence?

The above three questions are a good example of the aphorism that any fool can ask many more questions than any wise person can answer.  By the way – what is wisdom and how does it relate to intelligence?  One could continue on this path for quite some time.
There are two definitions of artificial intelligence that sidestep most controversy.  We might as well mention them first, before we proceed to a discussion of intelligence.
Artificial Intelligence as an approach to intractable problems

Here we must make a brief detour into the theory of computability – normally a very abstract and difficult subject.  The key idea is that of “computational complexity”, basically the amount of computation it takes to solve a given problem.  There are four basic classes of interest to us, which can be given the following informal names.

1)
Tractable
(Easy to solve; e.g., searching and sorting arrays.)

2)
Not-provably-tractable
(Most likely hard to solve; e.g., Traveling Salesman.)

3)
Intractable
(Provably hard to solve.)

4)
Not solvable
(Provable that no algorithm solving the problem can exist.)
We immediately set aside the small set of problems for which it can be proven that no algorithm exists that will provide a solution and move on to the dichotomy of tractable problems and everything else.  The class “everything else” includes both problems for which it can be proven that any solution takes a lot of computation (class 3) and those for which no known efficient solution exists (class 2).  Basically, either we know of an efficient solution or we do not know of one.
Problems that are not provably tractable include those for which the only known approach to solving a problem of size 50 takes 6.083(1062 computations.
One view of artificial intelligence is that it focuses on non-algorithmic solutions to problems for which the best known algorithms take too much time.  Problems in this class include the famous Traveling Salesman Problem (TSP) for which all known algorithms take time proportional to the factorial of the number of cities – to be precise (N – 1)! steps to solve the N-city problem.  This is the example used to provide the number above, based on the approximation 49! ( 6.083(1062.  A computer capable of 1012 operations per second (there are none at present, but their creation is a reasonable near-term research goal) would require at least 6.083(1050 seconds or slightly less than 2(1035 years to complete the solution.
This view of AI is the easiest to defend theoretically, but note that it completely avoids any mention of the word “intelligence”.

The Turing Test

The Turing Test, devised by the mathematician Alan Turing, avoids the slippery definition of the word “intelligent” by positing a simple well-defined test, called the Turing Imitation game.  A person, called the tester, (male or female – it does not matter) is seated at a terminal connected to two other input devices.  One of these input devices is also a terminal being operated by another human and the other input device is actually a computer.  The tester types sentences to either the other human or the computer and attempts to determine which is the computer.  The question is whether or not the computer can be programmed to mimic the human sufficiently to fool the tester for a period of five minutes.
Note that the original Turing test had a tester trying to determine which of two humans is a male and which is female, assuming that the tester is communicating with one of each, but that in today’s politically correct climate we prefer to forget this chauvinistic test.

One should note immediately that the test is based on the communication of textual information, so that it avoids two areas considered very important in the field of Artificial Intelligence: the understanding of spoken natural language and the analysis of visual scenes.

Before we consider the subject of intelligence in general (and predictably fail to come to any good definition), let us dispose of a few questions.
Should an AI system attempt to mimic human intelligence?

The answer is that it is not necessary.  We present two examples, one from the military.


1)
The US Army has an interest in tank warfare, specifically finding and neutralizing enemy tanks before they can inflict damage on our forces.  At least one army commander known to this instructor would be more than happy with a robot that stalked and attacked enemy tanks at the intelligence level of a common house cat.  This author at one time had three house cats who teamed very efficiently to trap and catch squirrels.  The result seemed very funny to this author, but the targets took great exception to the sport.

2)
There are many bio-remediation applications for small robots with the intelligence level of an ant.  Ants are very primitive creatures that display rather remarkable group intelligence.  Imagine a swarm of robots dedicated to cleaning a toxic spill and then returning to the “nest” where they deposit the toxic materials.
Artificial Flight

When considering goals for the discipline called “Artificial Intelligence”, we should consider another area of research and engineering, one that might be called “artificial flight”.  Ever since the ancient Greeks (recall Daedalus and Icarus) and possible earlier, humans have dreamt of flying “like the birds”.  This obsession to fly in the same way as birds do possibly hindered the construction of actual flying machines.  Consider the design by Leonardo da Vinci, who proposed a flying machine with flapping wings powered by human muscles.  This never could have flown, due to limits in the muscular system of all humans.  Many 19th century attempts to fly involved machines with flapping wings; none of these worked and several actually shook themselves apart.  It was not until the early 20th century that a number of investigators began to consider propellers as a way to power “heavier-than-air” aircraft.

The one major consideration in the above history is that birds are not constructed exactly like machines.  With the exception of some microscopic organisms, very few animals have muscles that sustain rotary motion.  The flight mechanisms of birds is adapted to the muscle structure of birds.  The flight mechanisms used by aircraft can (and do) take advantage of the rotary motion more natural to mechanical contrivances.
Now that we have built and routinely use flying machines, we can ask if it would be useful to build a machine that flapped its wings and possibly appeared like a bird in flight.  To this author’s mind, such an experiment would be quite interesting, but would likely have little practical impact on the world of flight.  Machines don’t have to do it like animals do.
Can machines do anything that humans can do?

Some people answer this one in the affirmative, claiming that it is possible theoretically to build a computational model of the human brain.  Were this possible, one could clearly create a program to implement that computational model.  This approach perhaps is a bit too simplistic, although those who deny such a claim are also a bit simplistic.  Specifically, it is not possible to prove that machines will never evolve behaviors such as love, fidelity, and moral choice.  Experiments by Douglas B. Lenat have yielded computer programs capable of remarkable and unexpected creative discovery, but admittedly in a constrained area.  The author of these notes longs to program a computer in such a way as it will feel pain and embarrassment.  Perhaps one can infer that not all of this author’s programs have worked.

The basic answer to this question is that it is probably not worth asking within the context of computer science.  Were it true, it would offer great help to those in the field of psychiatry in that one could “reprogram” schizophrenics and other mentally ill people to be normal.  Much science fiction (consider the movie “Total Recall”) seems to be based on a similar premise, but we should leave this one alone and focus on approaches that are computationally feasible.
1.1.1
What is intelligence, as presumably evidenced by humans?
This is a very tough question for anybody to answer, so the first response to this question is to ask why we, as computer scientists, should care about the number of possible answers to this question.  The reason that we should care is that a number of models of intelligence lead immediately to distinct approaches to software design.  We shall begin with one model that is not very helpful and move on to those we can use.
The Human Computer

There are known cases of humans with remarkable computing abilities.  Many of these are called “idiot savants” in that they have this ability at the cost of normal functionality.  A calendar calculator is a typical idiot savant, he can almost immediately tell what day of the week any given date fell on (such as July 27, 1782), but probably cannot make change for a twenty dollar bill.  More perplexing are fully-functional people with such abilities; there is a well-known scientist who used to work at Los Alamos; he could take the square root of a 51 digit number in his head in about five seconds.  Apart from this ability, which he considered on the same level as a well-executed magic trick, the man was a remarkable scientist who interacted well with others (a trait absent in idiot savants) and did much productive work.
Consider a simpler problem – addition of two numbers with large (20 or more) numbers of digits.  The inability of most of us to do this in our heads evidences one fact about our mental processes, that they are not “register oriented” – we cannot set up variables mentally, store values in them, and instantly recall the values as needed.

The reader should note one of the consequences of the last examples.  People who appear to have a “register oriented” memory in that they can memorize and recall large numbers are rare, while most models of computing machines are register (or variable) oriented.  This indicates that a modern digital computer may not be a natural model of the human mind, leading to the conclusion that human intelligence may be hard to mimic in such a computer.
Intelligence as the accumulation of knowledge
One model of intelligence focuses on the acquisition of large amounts of knowledge and the ability to reason using such knowledge.  In an informal sense, this picture represents one of the more common ideas of intelligence; how well does one score on an IQ test.  Put simply this view equates intelligence with the ability to do symbolic reasoning.
One significant feature of programs that model this behavior is the facility to explain the line of reasoning that lead to a specific answer.  This feature tends to enhance acceptance by human experts, such as medical doctors, who are far more comfortable accepting results for which consistent explanations are offered.
The computational model that reflects this approach is that of expert systems.  When we study expert systems, we shall find them to be quite powerful, but only in narrow ranges of specialization.  Specifically, expert systems do not adapt well to unexpected inputs.
Learning machines

Another definition of human intelligence relates to the human’s ability to learn and change behavior in response to feedback.  One may quickly ask whether or not a computer can learn and what it would mean for a computer to do so.  This author cannot let this discussion pass without telling a true story from his freshman days at college (in 1964 if you must know).  He was learning to program a small computer, called the IBM 1620.  That machine had a program that played three-dimensional tic-tac-toe.  In this game, the human was always invited to play first.  After a number of losing games, this author finally beat the machine.  On a guess, he repeated the same set of moves; the machine responded identically to the previous game and this author again beat the machine.  After repeating this winning game a number of times, this author decided that the computer was not learning from its mistakes.
It is now quite possible to create computer programs that “learn”, at least to the degree that such a program would not play the same losing game time after time.  We shall discuss this possibility when we get to the representation of game trees.
Ability to Survive

A number of philosophers, including Heidegger and Merleau-Ponty, intelligence is not knowing what is true (and how to reason from it), but the ability to survive in a world that is constantly changing.  This would be a logical conclusion if one were to posit that intelligence arose as a result of evolutionary pressures in a changing world, beginning with the origins of the human species in Africa a few million years ago. 

This “survivalist intelligence” model might lead to a computational approach that focuses on interacting with an environment and responding appropriately.  Genetic algorithms were inspired by this approach, in this programming method a number of trial solutions are evaluated with the best ones being kept and new solutions generated based on these – only the better solutions “survive” while the inferior solutions are pruned.

Social Intelligence

For many species, intelligence seems to be a product of cooperative behavior.  As we have mentioned earlier, an ant colony can generate apparently intelligent behavior out of the interaction of a large number of very simple agents – the individual insects.  Similar behavior is noted among other social insects, such as bees.  This behavior has been adapted in a style of programming based on creating a collection of simple autonomous agents, each of which interacting with a number of others to solve complex problems.
1.1.2
Attributes of an Intelligent Machine

If we have not already noticed this fact, we shall mention it now – the choice of the name “artificial intelligence” is unfortunate in that it leads us into speaking of “intelligent machines” as computers that “know something” and mimic human intelligence.  This approach is often less than productive, but we stay with it for a while.  We begin with a discussion of the Turing test, as proposed by Alan Turing in 1950, and consider some of its implications.
The Turing Test and Its Implications

The Turing Test postulates a human communicating via a text communication device (think keyboard and video display terminal) with some other entity – either a computer or another human.  There are a number of implications of this test.  We list these and discuss them.

Natural Language Processing

The Turing Test, as originally proposed, does not call for the computer to understand spoken language but typed input from a terminal.  The understanding of spoken language is far more difficult; the proper understanding of a textual representation of an English sentence being sufficiently challenging.  There are a number of classes of grammars, natural language belonging to the least restrictive class – that in which the meaning of a sentence depends on its entire context.  Puns, jokes, and slang are especially difficult for a computer to understand.

Allowing the input to the computer to be from a keyboard does avoid the problem of reducing a spoken natural language to its printed form.  This continues to be a challenging problem, with notable success only in restricted areas of discourse with a fixed and narrow vocabulary.

The author of these notes will here insert a personal story.  While in graduate school, he had a friend from Iran.  This person was John Dayani.  John’s mother came to visit one day, and your author and his wife visited them.  John’s mother spoke only Farsi, the national language of Iran.  John spoke both Farsi and English, and would translate our comments for his mother.  When John spoke Farsi to his mother, your author noted that he could not distinguish the words, and that the speech appeared to be one continuous babble with no noticeable breaks.  Your author asked John to ask his mother what she thought of spoken English as she was hearing it when we had something to say.  When she understood what was being asked, she answered that she had exactly the same opinion of our spoken English, not being able to parse the sounds she heard into distinct words.  Being able to identify the words in a stream of spoken language is critical to identifying what the words mean.  This is hard for a computer.
To make this point a bit more obvious, your author does not speak Spanish and understands very little of the language.  Nevertheless, whenever Spanish is spoken in his presence, he is able to distinguish the words, even if he does not understand their meaning.  This shows that language understanding has at least two basic steps.

Knowledge Representation
This subject involves a considerable generalization of the ideas first developed in a course on data structures.  In order to process knowledge, it is necessary to create structures by which the knowledge can be stored in the computer memory.  The major requirement is that the data representing the knowledge must be in a form that facilitates processing by a program.
As an example, consider the scene from the blocks world, as found on page 20 of the text.  The sort of knowledge representation that would be desirable is one that mimics human experience:

1)
One large red cube and one small red cube,

2)
Two large green cubes,

3)
A red pyramid and a smaller green pyramid, etc.

A more complete knowledge representation would included the “semantics of the scene”, that is the relationships of the blocks.

Within the limited context of the blocks world, a knowledge representation is facilitated by the fact that the number of possible objects is considerably constrained.  In general, if we have a limited set of objects from which our world is constructed, we can construct a set of data structures that will adequately represent an instance of that world.  But suppose we remove the constraints and specify only that the world correspond to a visual scene, something that is possible to exist in reality, and which can be seen and analyzed by a human.

The most natural data structure for representing a visual scene is a bitmap.  Consider a visual scene represented by a 1 mega-pixel digital picture, in which each pixel represents an 8-bit color.  Eight-bit color allows for 256 possible colors; we stipulate that this number of colors at this resolution would allow a human viewing the picture to discern the picture’s contents and present a reasonable description of what is seen.  What is given to any computer program analyzing this scene is the natural data structure – one megabyte of color values.  This is raw data, not knowledge.  The program must analyze the visual scene represented by this one megabyte of raw data, abstract its principle features, and construct a useable higher-level representation of the scene.  As an example, consider the following bitmap.
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Any human examining the picture would immediately recognize that it includes at least two and possibly as many as four humans, presumably male.  A human from a technological society would recognize that the object to the left is some sort of mechanical vehicle, possibly a variant of a jeep or four-wheel-drive vehicle.  Note here that we are already assuming some existent knowledge in the human examining the picture, a person who had never seen a jeep or other self-propelled vehicle might have difficulty in analyzing the scene.
A more sophisticated analysis of the picture would reveal some interesting objects on the superstructure of the vehicle.  In fact, these are television cameras used to transmit visual scenes to a computer inside the vehicle.  The vehicle is the “CajunBot”, an entry by the University of Louisiana in a contest to construct an autonomous vehicle.  The goal was for the vehicle to navigate a prescribed course in the desert without the help of a human driver.  The CajunBot did fairly well in the competition, but the fact is that none of the robot vehicles completed even a small fraction of the course.

Within the context of knowledge representation, we present the picture of the CajunBot for two reasons.  First, it is a picture that is represented, but very poorly described, by a bitmap image.  We can imagine the sophistication of a computer program that would analyze the picture, as we humans have done, and present a high-level description of what is there.  Secondly, we present the CajunBot because one of the major design challenges was for it to process the video input and abstract from that pixel data a safe route by which to drive.

Automated Reasoning
Another major aspect of a program that will be said to display intelligent behavior is a capacity to do automated reasoning, not just simple search and optimization procedures.  Simple search strategies examine every possible solution of a problem in order to find an optimal solution.  Optimization algorithms assign an objective function to the solution space and then try to maximize or minimize that function and describe the solution associated with the extremal value just obtained.  We want an automated reasoning facility that will show preference to solutions that are more likely to be successful and to stop the process when it finds a solution that is good enough.

Machine Learning

These notes have already mentioned machine learning, so we limit ourselves here to the statement that we want the system to assess the outcomes of its existing strategies and modify them as necessary to achieve better results.

1.2

The Foundations of Artificial Intelligence
In this section, we present brief discussions of a number of fields of study from which the field of artificial intelligence has drawn experience and inspiration.

Philosophy, Logic, and Mathematics

There are a number of questions based in these areas that might be approachable through AI.


1.
Can formal rules be formed to draw conclusions that are either valid or probable?


2.
What are the formal rules to draw these conclusions?


3.
What processes can be automated via an algorithm?


4.
How do we process uncertain information?

The idea of formal logic dates at least to the ancient Greeks (this author will bet that the early Chinese also knew these laws) before the time of Aristotle (384 – 322 BCE) who wrote the oldest known formulation of the laws.  An example of the early attempts at precise logic and definitions comes from the school of Socrates, with which Aristotle would have been quite familiar.  In searching for a precise definition of a human being, one of the students suggested the definition “featherless biped”, whereupon another student plucked a chicken and threw it over the wall into the area in which the lectures were being held.
All students of logic are familiar with the idea of a proposition , its converse, and its contrapositive.  Given the expression “if A then B”, often written as “A ( B”, we have two related expressions:
“if not B then not A”
the contrapositive, written as “(B ( (A”




“if B then A”

the converse, written as “B ( A”.

These logical statements can be expressed in different ways, which we shall study later in the course.  At the moment, we limit ourselves to an example.  Consider the expression “All elephants are animals, but not all animals are elephants”.  Define the following

A
X is an elephant

B
X is an animal.
“All elephants are animals” can be rewritten as “If X is an elephant then X is an animal”  The logical form is A ( B, which is equivalent exactly to (B ( (A; that is, if X is not an animal, X cannot be an elephant.  This example clearly shows that “A ( B” and “B ( A” are not equivalent; there are many animals that are not elephants.  Some of the formal methods in Artificial Intelligence, including Bayesian logic, deal with estimating the likelihood that
B ( A, given that A ( B.  Obviously, this depends on the likelihood that (A ( (B, or equivalently, the likelihood that (A ( B.  In our new way of thinking, we conclude that the statement “if X is an animal, then X is a dog” is more likely than “if X is an animal, then X is a polar bear” for most people living in the tropics, although neither is logically necessary or even very probable.  Here is the generalized problem from AI.

Given that A ( B and (B is true), assess the likelihood that (A is true).

The study of algorithms has a long and venerable history, although one has to be cautious about the definition of the term “algorithm”.  It is obviously some sort of efficient method for achieving a specified goal.  To give ourselves a more solid foundation, I quote the definition from the standard class on Algorithm Analysis and Design (CPSC 5115 at CSU).
An algorithm is a sequence of unambiguous instructions for solving a problem.

The full definition must include the provision that the algorithm terminate for any valid input.  So we have the following definition of algorithm, taken from an another text.

Definition: An algorithm is a finite set of instructions which, if followed, will accomplish a particular task.  In addition every algorithm must satisfy the following criteria:


i)
input:
there are zero or more quantities which are externally supplied;

ii)
output:
at least one quantity is produced;

iii)
definiteness:
each instruction must be clear and unambiguous;

iv)
finiteness:
if we trace out the instructions of the algorithm, then for all valid



cases the algorithm will terminate after a finite number of steps;

v)
effectiveness:
every instruction must be sufficiently basic that it can in principle



be carried out by a person using only a pencil and paper.  It is not



enough that each operation be definite as in (iii), but it also must



be feasible, or expressible as a finite sequence of instructions in



the basic machine language of some computer.

Those who work in the area of engineering called “Operations Research” view algorithms within the context of optimization problems and add an additional requirement.

vi)
optimality:
the algorithm must always produce an optimal solution; for



problem instances with more than one optimal solution, the



algorithm may return any of these solutions.
We comment here that methods studied in Artificial Intelligence are not usually appropriate for problems having easy algorithmic solutions.  Within the context of computability theory, these problems are called “tractable”, and have as examples problems such as searching, sorting, finding the minimum or maximum value of a set of numbers, etc.  Methods such as those developed in the study of Artificial Intelligence are better applied to problems for which either no efficient solution is known to exist or for which it can be proven no efficient solution can exist.  In such instances, AI methods offer some chance of achieving a reasonable solution within a reasonable time.
Economics

The study of economics leads to several interesting categories of questions.

1.
How can we make decisions if our goal is to maximize a profit or minimize a cost?

2.
How do we make decisions in the face of near-term costs and benefits that may


be realized only in the distant future?

3.
How should we act when others are not following our preferred strategy?

Probably the major contribution of economics to the study of artificial intelligence is its quantification of problems that appear at first to be non-numerical.  Notable contributions in the 20th century development of economics include decision theory and game theory, both of which can find applications in what we call Artificial Intelligence.

Neuroscience & Psychology
There are two facts that have motivated researchers to examine neurology as a source of inspiration for the investigation of artificial intelligence:

1)
Humans appear intelligent, and

2)
Human brains are not well modeled as stored-program computers.

One of the main problems that has resulted in this focus on solutions from neurology is the vision problem, specifically the understanding of visual scenes.  One example problem is the navigation of a robot in a room full of obstacles, such as chairs and tables.  For a traditional stored program computer, such a problem is quite overwhelming.  To quote one AI researcher, “We would conclude that vision is impossible, if we did not already know otherwise”.

The discipline in AI that is most related to this approach is that of neural nets.  In their pure form, these are actual networks of small computational devices; in actual fact they are usually software simulations of such networks.  Such networks have three major components, with the structure being modeled after the interconnections of the rods and cones in the human eye.

1)
An input system with one or more inputs,

2)
A “tunable” interconnection network that combines the inputs in ways that can


be changed in real time, and

3)
An output system with one or more outputs.

Neural nets are not programmed, but “trained” by the use of feedback.  When the network produces the desired result, the connections in the network are reinforced, when it does not the connections are modified.  The idea is that constant modification and tuning will lead to an interconnection network that always gives the right answers.

What follows is a true story about neural network research funded by the U.S. Army out of Redstone Arsenal, AL.  The research was performed at the University of Alabama in Huntsville by a friend of this author.  The goal was to create a neural network that would identify tanks, and not be fooled by other large objects such as rocks and houses.
The network was built (perhaps in simulation) and training begun with showing it pictures of scenes containing a tank and scenes containing other large objects.  Each picture was placed in front of a video camera, which digitized the scene and passed its output as input to the neural net.  After some time, results began to look very promising.  Every time one of the pictures with a tank in it was put in front of the camera, the system said there was a tank there; and every time a picture with some other large object was put in front of the camera, the system said that there was no tank present.  There were no false positives and no false negatives.

This happy state of affairs persisted until the set of independent tests performed by the Army.  In those tests, the system did very poorly.  Its unexpected degradation in performance caused some consternation in the researchers, until they analyzed the data properly.  Here is the result of the analysis, based on two characteristics of the picture.

	Reality
	Picture taken on a
sunny day
	Picture taken on a 
cloudy day

	Picture contains
 a tank
	System finds a tank.
	System does not
find a tank.

	Picture does not
contain a tank
	System finds a tank,
	System does not
find a tank.


The researchers then inspected their training data set and discovered that every picture with a tank in it had been taken on a sunny day, while every picture with no tank on a cloudy day.  The Army laughed, and thanked the researchers for building a system that could distinguish sunny days from cloudy days, but regretted that they could not pay for such a system.
Control Theory
The basic premise of control theory is that a machine can be controlled by feedback indicating its interaction with the environment.  An early example of a feedback control mechanism is the steam engine governor, created by James Watt (1736 – 1819).  This is a good example of a mechanism using negative feedback; which is not to be viewed as discouragement, but as changing the behavior of a machine in a direction opposite to the current direction.

In a steam engine governor, the operator selects a desired speed and sets the governor to reflect that speed.  Should the engine speed up, the governor reduces the steam pressure and thus slows it down.  Should the engine slow down, the governor increases the steam pressure and thus speeds it up.  The feedback is negative in that a change in the engine speed in one direction causes a change in the control that sends the speed back towards the desired value.

Fans of the “Star Wars” movies should consider robots such as C–3PO , the protocol droid.  There is a lot of control theory involved in maintaining an erect stance on two legs.  R2–D2 had an easy time of it, rolling around as it did.
1.3

History of Artificial Intelligence

The book presents an interesting history of the discipline of Artificial Intelligence.  These notes will not duplicate that history, but only comment on it.

1.3.1
The Turk
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One of the earlier supposed examples of Artificial Intelligence was a chess-playing machine called “The Turk”, that toured Europe and the United States in the late 18th and earliest 19th century.  The figure at right was taken from the CNN website, more specifically from a report titled “The computer wore a turban and played chess”, posted on May 30, 2002.  In order to understand this machine, one must first note that the view at right was never presented to the audience; only one door at a time was opened to reveal the marvelous clockwork inside.
The Turk was created in 1769 by a Hungarian nobleman named Wolfgang von Kempelen, who challenged all comers to play the machine.  The Turk did, in fact, defeat almost all opponents.  The brilliance of its design had nothing to do with artificial intelligence, but more with the old conjuring tradition of hiding a man in a cabinet in such a way as not to be detected by careful inspection.  In truth the machine hid a human expert chess player who was also a fairly good contortionist – as one door was opened he would hide behind another.  During the history of the Turk’s exhibition, a number of human chess players provided the intelligence.
Edgar Allan Poe, the great American writer, was one of those particularly fascinated by the Turk.  What is interesting is that he considered it to be a fake because no machine could possibly lose a match.

1.3.2
General Purpose Problem Solvers

Computers are well known to be able to apply specific algorithms to problems and to produce useable results.  The early age of Artificial Intelligence was characterized by boundless enthusiasm and the belief that computers would be able to solve many non-numerical problems.  Two of the early programs were a general purpose reasoning tool, called “Advice Taker” and another called “General Problem Solver”.  This author considers this early stage of AI to be quite significant in that it really clarified the difficulties associated with the area.
Early in the development of Artificial Intelligence, it became obvious that procedure-oriented languages, such as Assembly Language and the recently developed FORTRAN did not fit well to the problems of interest.  For this reason, a number of programming languages were developed, including the language LISP, developed in the late 1950’s by John McCarthy while at MIT.  One of the key functions in LISP is called EVAL, which does exactly what one would expect – it evaluates expressions.  The story is that Dr. McCarthy viewed LISP purely as a formal language until one of his graduate students wrote an interpreter for the EVAL function and was able to use it to evaluate text files representing the source code of LISP programs.
The name LISP stands for List Processing Language, reflecting the fact that lists form one of the most important data structures in this type of programming.  Those of us who have worked with the language know that it really stands for Lots of Insipid Stupid Parentheses.
LISP is an old programming language and carries its history with it.  It was originally developed on an IBM computer, one that had two specific sets of registers:

AR

the Address Registers


DR

the Decrement Registers

In the assembly language interpreter for the LISP language, it became the practice to store the first element in a list at an address held in the address register and the rest of the list in an address held in the associated decrement register.  For this reason, the two main operators for manipulating lists became


CAR
Contents of the Address Register


CDR
Contents of the Decrement Register
The student should realize that LISP was written with ease of interpretation by the computer as a main goal.  Interpretation by humans was of little importance, since most of those humans who first saw it were mere graduate students, a.k.a. “graduate slaves”.  To show the difference, we compare two very simple statements, each in a language of the 1950’s.

FORTRAN:
X = 1 + 2

LISP:

(SETQ X (+ 1 2))

The student should note that we all make use of one product of this development of LISP as a programming language.  It was realized early that a human would need a fairly sophisticated visually-oriented text editor to write LISP programs.  EMACS was one of the first such editors, having special features to balance parentheses in an expression.  Consider the following two examples, where the underline indicates the position of the cursor.

( SETQ X (+ 1 2) )
the first parenthesis as the matching one starts to flash

( SETQ X (+ 1 2) )
the second opening parenthesis starts to flash.

If you like the Visual C++ editor, you owe a debt to the early LISP developers.

Note the numerous parentheses in the Lots of Insipid Stupid Parentheses example.  This greatly facilitates parsing by a computer.  Note also the prefix notation “+ 1 2”, with the operator as first in the expression as opposed to the FORTRAN infix expression.  In general either prefix or postfix (reverse Polish notation) is easier for computers to handle.

Another development in the early age is that of fuzzy logic, first announced in a 1965 paper “Fuzzy Sets” by Lotfi Zadeh.  We shall spend some time on the study of Fuzzy Expert Systems (Chapter 4 in the textbook), which are rule-based systems using fuzzy logic.  At this time, we merely give a very simple example of fuzzy sets.  We all know what cold weather is and what hot weather is.  In formal set theory, we would have to specify a fixed temperature T such that 
if the temperature exceeds T, then the weather is hot, otherwise



if the temperature does not exceed T, then the weather is not hot.
Almost everyone would agree on the following statements



104( F (40( C) is definitely hot


50( F (10( C) is definitely not hot


86( F (30( C) is not quite clear, but probably is not hot.

One way that mimics human experience is to define several fuzzy sets and define these values by membership in the fuzzy sets COLD, COOL, WARM, and HOT.  Thus


104( F 
might be assigned the value (0, 0, 0, 1.0)
- decidedly hot


50( F
might be assigned the value (0.2, 0.8, 0, 0)
- mostly cool, but maybe cold.

Later we shall give a much more precise formulation of fuzzy sets.

1.3.3
ELIZA and Natural Language Processing
NOTE: The source for almost all of the information on ELIZA is a report created by Christopher Rose on 2/21/2003 for a class CSE391, presumably at the University of Pennsylvania.  It was located on Google using the key words “artificial intelligence”, “natural language”, “Rogerian”, and “Eliza”.

In the mid 1960’s, we saw an rather frightful example of an AI program – called “ELIZA”, a program designed to mimic a Rogerian psychologist – i.e. a psychologist who practices what is called Rogerian Therapy, in which the therapist takes a passive role, reflecting the patient’s statements back by reformulating the statements as questions.  The ELIZA program was created in the early 1960’s by Joseph Weizenbaum at MIT as an experiment in natural language processing.  The scary part of this is how many people attributed human intelligence to the program, which used a number of syntactic tricks to extract a question from a previous statement that the “patient” had typed in.  If the program could not apply any of its rules, it output a generic question such as

“That is very interesting.  Why do you say that”, or

“Tell me about your mother”

Here is a typical session.  Remember that all interaction was by means of keyboard and some sort of monitor, specifically that no speech was involved.

Person:
Men are all alike.

ELIZA:
In what way?

Person
They’re always bugging us about something or other

ELIZA:
Can you think of a specific example?

Person:
Well, my boyfriend made me come here.

ELIZA:
Your boyfriend made you come here?

Person:
He says I’m depressed much of the time.

ELIZA:
I am sorry to hear that you are depressed.

In the late 1960’s, the US government tried to make it easier for our researchers to read results coming out of the Soviet Union.  It sponsored human translations of Soviet technical journals and sponsored an effort for computer translation of articles from Russian to English.  The author of these notes was a user of such machine translations in the late 1960’s and found it easier to read the original Russian than the English produced by these programs.
1.3.4
Expert Systems

In the early 1970’s the experts in AI decided to “punt”, that is – to focus development on problems much less ambitious than the general reasoning problems attempted earlier.  It was decided to create programs focusing on a narrow area of expertise; these programs are now commonly called Rule-Based Systems or Expert Systems.  Such systems work by mimicking the decision steps made by human engineers in solving a problem.

Associated with the discipline of Expert Systems, there arose a discipline called “Knowledge Engineering”, which focuses on interviewing experts in the area and deducing how these experts solved problems.  It was quickly realized that asking a human expert to for a written description of the process was largely useless as the document would almost certainly be incomplete and leave out all of the important stuff.  Knowledge engineering became the art of interviewing experts, often by posing case studies, to elicit the “rules of the game”.  It is not that the experts were uncooperative, it is just that much of what they do is almost unconscious and they have a hard time describing it formally.

One of the early expert systems was R1, written by John McDermott in the late 1970’s.  The author of these notes has met Dr. McDermott and heard his explanation of the name – an adaptation of an old joke “Two years ago I couldn’t spell ‘Knowledge Engineer’ and now I are one.”  The project, later renamed, focused on configuring VAX computers produced by the Digital Equipment Corporation (now defunct) of Maynard, MA.
The Digital Equipment Corporation had invested in an algorithmic solution to the problem of configuring computers for customer requests and had almost no success.  As a result, the engineers at DEC concluded that the problem required human expertise and that no program could solve it.  The program R1 was quite successful in producing consistent configurations and reportedly saved DEC quite a bit of money.
The other expert system that is always mentioned is Prospector, which was used to locate a molybdenum deposit valued in excess of one hundred million dollars.
1.3.5
Where Now?

At present there are two fairly interesting areas of research associated with AI.


1)
Creating computer programs that perform new useful tasks.


2)
Creating a computational model of human or animal mental processes in order


to understand the difficulties associated with those problems.

For this author, the second area of research is quite fascinating.
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