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Abstract

This thesis describes an online search engine for 3D models, focusing on query

interfaces and their corresponding model/query representations and matching meth-

ods.

A large number of 3D models has already been created, many of which are freely

available on the web. Because of the time and effort involved in creating a high-

quality 3D model, considerable resources could be saved if these models could be re-

used. However, finding the model you need is not easy, since most online models are

scattered across the web, on repository sites, project sites, and personal homepages.

To make these models more accessible, we have developed a prototype 3D model

search engine. This project serves as a test bed for new methods in web crawling,

query interfaces, and matching of 3D models. This thesis focuses on query interfaces

and their accompanying matching methods. We investigated query interfaces based

on text keywords, 3D shape, 2D shape, and some combinations.

By testing matching methods that use text, 3D shape, and 2D shape, we found

that the 3D shape matching method outperforms our text matching method for our

application domain, due to the insufficient text annotation of 3D models on the web.

Furthermore, classification performance was improved by combining the 3D shape-

and text-based matching methods. The results of a user study also suggest that text

can combine with shape to make queries more effective.

We compared shape matching methods based on matching multiple 2D projections

of a 3D model and found that from a set of side, corner and edge projections, the

combination of side and corner projections produced the best results. However, these

results were still worse than those of the 3D shape matching method.

We present a 2D structural interface and accompanying matching method that
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produces better classifications than image matching for certain types of objects.

Our prototype search engine has been used extensively across the world (in 18

months, almost 300,000 queries have been processed from more than 100 countries)

and has proven to be useful (models have been downloaded over 50,000 times, and

almost 30% of all visitors per day are returning users).
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Hemels, Lizza Westerhof, Jacqueline Neumann, Reinoud van Leeuwen, Hanno Liem,
Florine Asselbergs, and Karolien van der Ven.

Thanks to my parents, for always supporting me, no matter what I chose to do.
And finally, to my dear Katerina, for being part of my life.

i



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

2 Related work 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Text Search Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 2D Image Search Engines . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Text-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Content-based . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 3D Model Search Engines . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Browsing a Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Searching by Text Only . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Searching by Shape . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Overview of Current 3D Search Engines . . . . . . . . . . . . 17

3 Text Query Interfaces 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Representative Text Document . . . . . . . . . . . . . . . . . . . . . 20
3.3 Text Matching Method . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Selection of Text Sources . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 26

4 3D Shape Query Interfaces 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Submitting Existing 3D Models . . . . . . . . . . . . . . . . . . . . . 28
4.3 Sketching a 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Matching Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1 3D Shape Matching . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.2 3D Sketch Quality . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 35

ii



5 2D Shape Query Interfaces:
2D Free-form Sketch 36
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 What Do People Draw? . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Matching a User Sketch to a 2D View . . . . . . . . . . . . . . . . . . 39
5.4 Matching Multiple Sketches to

Multiple 2D Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 Outline View Selection . . . . . . . . . . . . . . . . . . . . . . 42
5.5.2 Text and Sketch User Study . . . . . . . . . . . . . . . . . . . 48
5.5.3 Sketch Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 52

6 2D Shape Query Interfaces:
2D Structure 55
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Our Approach:

Matching Directly to the 2D Views . . . . . . . . . . . . . . . . . . . 59
6.3.1 Choice of Part Primitive . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 Ellipse Parameterization . . . . . . . . . . . . . . . . . . . . . 61
6.3.3 Matching Method . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.1 Test Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.2 Parameter Optimization . . . . . . . . . . . . . . . . . . . . . 74
6.4.3 Comparison to our 2D Sketch Matching Method . . . . . . . . 78
6.4.4 Timing Results . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Comparison of Matching Methods 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Test Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Creating the Database . . . . . . . . . . . . . . . . . . . . . . 86
7.2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Comparison of Individual Methods . . . . . . . . . . . . . . . . . . . 89
7.4 Comparison of Combined Methods . . . . . . . . . . . . . . . . . . . 90
7.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Search Engine Usage Results 92
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 Overall Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Text Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4 3D Shape Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

iii



8.5 2D Shape Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.6 Combined Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.7 Query Processing Performance . . . . . . . . . . . . . . . . . . . . . . 96
8.8 Visitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Conclusions and Future Work 100

A Precision/Recall 103
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2 Things to Consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2.1 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2.2 Miscellaneous class . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2.3 Possible Query Results . . . . . . . . . . . . . . . . . . . . . . 105
A.2.4 Random Results . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2.5 Averaging Precision Values in Recall Bins . . . . . . . . . . . 105

B Implementation Details 107
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Acquistion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.2.1 The Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.3.1 File Organization . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.3.2 Conversion to VRML 2.0 . . . . . . . . . . . . . . . . . . . . . 112
B.3.3 Thumbnail Creation . . . . . . . . . . . . . . . . . . . . . . . 112
B.3.4 Text Extraction and Indexing . . . . . . . . . . . . . . . . . . 113
B.3.5 Conversion from VRML to PLY . . . . . . . . . . . . . . . . . 114
B.3.6 3D Shape Descriptors . . . . . . . . . . . . . . . . . . . . . . . 114
B.3.7 2D Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.3.8 2D Shape Descriptors . . . . . . . . . . . . . . . . . . . . . . . 115

B.4 The Search Engine Site . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.4.2 Text and/or 2D Sketch Queries . . . . . . . . . . . . . . . . . 115
B.4.3 Text and/or 3D Sketch Queries . . . . . . . . . . . . . . . . . 116
B.4.4 3D File Upload . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.4.5 Find Similar Shape . . . . . . . . . . . . . . . . . . . . . . . . 117
B.4.6 The Results Page . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.4.7 The Information Window . . . . . . . . . . . . . . . . . . . . 117
B.4.8 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.5 The Matching Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.5.1 Running the server . . . . . . . . . . . . . . . . . . . . . . . . 120
B.5.2 Log Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iv



List of Figures

1.1 The main components of the search engine web site . . . . . . . . . . 3
1.2 An example 3D sketch query using Teddy, and the first 12 results . . . . . 4
1.3 An example 2D sketch query and its results . . . . . . . . . . . . . . . . 5
1.4 An example parts-based query of a 2D structural query interface . . . . . 6

2.1 An example query using the “ShapeSifter” site . . . . . . . . . . . . . 15
2.2 An example search using the “Ephesus” system [74] . . . . . . . . . . . . 15
2.3 An example search using the online “Ogden IV” system [101] . . . . . . . 16
2.4 An example search and some results from Utrecht University’s 3D Shape

Retrieval Engine [102, 105] . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Example results from ITI’s 3D Search site when searching for the Lego man

model on the left [47, 57] . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Example outline sketch query for a 3D ceramic vessel using Arizona State

University’s “Visual Query Interface” [80, 84] . . . . . . . . . . . . . . . 17
2.7 Example results from a 2D sketch query at National Taiwan University’s

3D Object Retrieval System [20] . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Average precision/recall for seven different text matching methods . . 23

4.1 Example objects created using (a) SKETCH [113], (b) a “suggestive inter-
face” [45], (c) Teddy [46], (d) variational implicit surfaces [52] . . . . . . . 30

4.2 Samples from ten representative classes from the Viewpoint “household”
and “miscellaneous” database (images courtesy of Viewpoint) . . . . . . . 32

4.3 A histogram of the class sizes of the 84 classes in the Viewpoint database 33
4.4 Precision/recall plots of our 3D shape matching method versus other methods 34
4.5 An example of each of eight categories for 1,000 submitted 3D sketches 34

5.1 An example single stroke drawn using our 2D sketching interface . . . . . 37
5.2 Pen-drawn sketches by people asked to “draw the shape of a” camaro car,

cow, dog, human with outstretched arms, mug, DC10 airplane, and sofa . 39
5.3 A 2D user-drawn sketch has to be matched to an outline of a 2D projection

of a 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Computing Kazhdan’s 2D shape descriptor [36] . . . . . . . . . . . . . . 40
5.5 An example 2D sketch query containing more than one sketch . . . . 41

v



5.6 Matching n = 2 user sketches to m = 7 2D views . . . . . . . . . . . 42
5.7 Two examples of each direction type (side, corner, and edge views) . . . . 44
5.8 Outlines of 2D projections (2D views) are created for each 3D model . . . 45
5.9 Average precision/recall using 1, 2, and 3 query views chosen from the SCE

view set, averaged over the 7 possible database view sets . . . . . . . . . 47
5.10 Three queries from each view set, into the same set . . . . . . . . . . . . 47
5.11 Three queries from S, C into the same database, and into SC . . . . . . . 49
5.12 Average precision/recall for our 3D shape matching method, three queries

from SC to SC, two queries from C to C, and a single query from S to S . 49
5.13 A corner view (top row), side view (middle row), and edge view (bot-

tom row) of four example models . . . . . . . . . . . . . . . . . . . . 50
5.14 Sketches drawn by students to retrieve a specific chair (top three rows) and

an elf (bottom three rows) during an in-class experiment . . . . . . . . . 51
5.15 Examples of sketches submitted by web users . . . . . . . . . . . . . 52
5.16 The first four matching results from our web database using a simple outline

sketch, and the same sketch with some interior detail added . . . . . . . . 53

6.1 An example parts-based query for an animal using ellipses as primitive
parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Optimal convex decomposition algorithms do not necessarily produce a good
segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 An example 2D contour, its Medial Axis (the dashed line), and two maximal
inscribed circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Two different part decompositions of a car . . . . . . . . . . . . . . . . . 59
6.5 A 2D user-drawn set of primitive parts has to be matched to a 2D projection

of a 3D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Possible choices for a part: (a) point (b) circle (c) square (d) line segment

(e) ellipse (f) rectangle (g) superquadric (h) geon (i) generalized “ribbon” 61
6.7 The relative angle α between two ellipses, and their shortest distance r . . 62
6.8 Links created for three different “leg” positions . . . . . . . . . . . . . . 63
6.9 Reparameterizing a child ellipse in terms of its parent . . . . . . . . . . . 63
6.10 An example image and its Euclidian Distance Transform (EDT) . . . 65
6.11 Computing the alignment of an ellipse with the EDT . . . . . . . . . . . 66
6.12 (a) an image of an filled ellipse, (b) an ellipse aligned with the EDT of

the image (alignment value 0.04), (c) the same ellipse image with a protru-
sion added (alignment value of the same ellipse 0.06), and (d) with more
boundary noise added (0.07) . . . . . . . . . . . . . . . . . . . . . . . . 66

6.13 The simplified shock graphs for the images in Figure 6.12 (a), (c), and (d) 66
6.14 An example of a result of the � operator . . . . . . . . . . . . . . . . . 67
6.15 (a) A set of ellipses representing a human figure. (b)-(f) Pose variations and

their corresponding deformation error values . . . . . . . . . . . . . . . . 68
6.16 Screenshots of all 75 models in the training set . . . . . . . . . . . . . . 71

vi



6.17 Screenshots of all 75 models in the test set . . . . . . . . . . . . . . . . . 72
6.18 Example models from two small test databases, their three plan views, and

the selected “characteristic” view . . . . . . . . . . . . . . . . . . . . . 73
6.19 Example ellipses drawn for the selected views in Figure 6.18 . . . . . . . . 74
6.20 Average precision for different values of the weight of the (a) image overlap

term, and (b) EDT alignment term, (c) ellipse overlap term, (d) deformation
term. Note that in each graph the y-axis starts at 0.5 and ends at 0.65 . . 75

6.21 The top five results for a set of ellipses representing a bird, with the
image overlap weight set to (a) 0.25, (b) 1.0, (c) 3.0 . . . . . . . . . . 76

6.22 The top five results for a set of ellipses representing a floorlamp, with
the EDT alignment weight set to (a) 0.25, (b) 1.0, (c) 3.0 . . . . . . . 76

6.23 The top five results for a set of ellipses representing a dinosaur, with
the part overlap weight set to (a) 0.25, (b) 1.0, (c) 2.5 . . . . . . . . . 77

6.24 The top five results for a set of ellipses representing a table, with the
deformation weight set to (a) 0.25, (b) 1.0, (c) 5.0 . . . . . . . . . . . 77

6.25 Average precision for different values of (a) the number of orientations to
try for the initial alignment, (b) the number of random image samples to
use for the image overlap term (the horizontal line shows the optimal value,
achieved when computing exact image overlap in pixels), (c) the number of
boundary samples used to compute the approximate ellipse overlap term,
(d) the number of samples along the ellipse’s major axis to compute the
EDT alignment term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.26 Precision/recall for 2D structural matching, 2D outline image matching
(of the ellipse outlines to the stored 2D view outlines), 2D image-to-image
matching, and random retrieval, for a test database of 15 classes of 5 models
each . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.27 Examples of structural matching across classes: (a) a man to a bird, (b) a
fighterjet to a passenger plane, (c) a dinosaur to a quadruped . . . . . . . 80

6.28 Similarity matrix of (top) 2D structural matching and (bottom) 2D im-
age matching. The brightness value of each pixel in each matrix has been
normalized by the average similarity score of the whole matrix . . . . . . 81

6.29 Similarity matrix of (top) 2D structural matching and (bottom) 2D image
matching. n : nearest match, ©: next four best matches (2-5), •: the next
four (6-9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1 A thumbnail image of a representative member of each of the 81 classes . . 88
7.2 A histogram of the class sizes of the 81 classes in our test database . . . . 89
7.3 Average precision/recall for text, 3D shape, and 2D shape matching . . . 91
7.4 Average precision/recall for the combination text+3D, and either method

by itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1 A pie chart of the relative use of each query interface . . . . . . . . . . . 93

vii



8.2 The number of unique hosts using the search engine per week (top) and the
percentage of returning hosts per week (bottom) . . . . . . . . . . . . . . 98

B.1 High-level schematic of the three main components of our search engine . . 107
B.2 Dataflow overview of the search engine . . . . . . . . . . . . . . . . . . . 108
B.3 Query processing and matching stage. The path of a 3D sketch query has

been highlighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

viii



List of Tables

2.1 Some examples of search engines for combinations of the type of information
indexed, and the type of query supported . . . . . . . . . . . . . . . . . 10

2.2 Current 3D model search engines, their model database size, the number of
freely downloadable models, and supported query interfaces . . . . . . . . 18

3.1 The average precision values achieved for the ten best combinations of
text sources. The numbers in a combination refer to the numbers in
Section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Percentage of all occurrences of each text source appearing in the best
50 and the best 100 combinations . . . . . . . . . . . . . . . . . . . . 25

4.1 The 84 classes in our test database of 1,093 models, donated by View-
point [107], and their sizes . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Relative sizes of the 3D sketch categories . . . . . . . . . . . . . . . . . 35

5.1 Seven “view sets” produced from different subsets of the total set of 13 views 44
5.2 Comparison of retrieval results with queries comprising only text, only 2D

sketches, and both combined . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1 The 81 classes in our test database of 1,000 3D web models, and the hierar-
chy in which they are organized. The actual classes are printed in boldface.
The right column shows the number of models in each class . . . . . . . . 87

8.1 Relative use of each query interface, and user interest in the search results 93
8.2 Some of the most popular query terms, grouped into categories . . . . . . 94
8.3 Average time for processing and matching for each query type . . . . . . 96
8.4 Number of different hosts from the 20 most frequent top-level domains . . 99

B.1 Supported 3D model formats, and converters used to convert to VRML 2.0 112

ix



Chapter 1

Introduction

Search Engines

The world-wide web is changing the way we find and use information. It provides
access to a vast amount of text and image data on every conceivable topic. Un-
fortunately, the sheer quantity of information can make it difficult to quickly find
what you are looking for. To aid in this search, many search engines exist that index
large portions of the web. They typically provide a search interface based on text
keywords: a user enters some descriptive keywords (e.g. “boeing 747”), after which
web pages containing these keywords are returned. Examples of popular text-based
search engines are Google [17] and AltaVista [3].

However, the web does not just contain text pages, but a lot of non-textual data
as well, such as images, sound files, or CAD models. Many so-called specialized
search engines targeting these specific kinds of data have been developed. Perhaps
the biggest such search engine is Google Image Search [37], which indexes hundreds
of millions of images. Other examples are FindSounds [34], a search engine for sound
files, and MeshNose [67], a search engine for 3D models. Many of these specialized
search engines take advantage of the fact that even though the indexed objects are of
a non-textual type, often they are annotated with descriptive text. The search engine
then simply tries to match the user-entered keywords to this descriptive text.

3D Models

One such non-textual data type is the 3D model, the basic building block of many
operations in 3D computer graphics applications. 3D models are used in, for example,
Computer Aided Design (CAD): a designer uses a 3D modeling tool to create a 3D
representation (i.e. a 3D model) of a new product. This model can then for example be
visualized in different colors and lighting conditions. It can also serve as a blueprint
for guiding the subsequent manufacturing process. Because creating such a high-
quality 3D model takes a lot of time and effort, it would be beneficial to have the
option of re-using and possibly adapting existing 3D models. Perhaps someone else
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created a similar product before, and the designer can start by adapting an existing
model instead of having to create one from scratch. Existing 3D models could also be
re-used, for example, in the creation of a virtual environment (e.g. for an architectural
walkthrough), as characters in a game, or for movie special effects.

The number of existing 3D models is already large, and we expect this number
to increase at a growing rate for three reasons. First, high-performance PC graphics
hardware has become very affordable, creating an increased demand for 3D mod-
els to be used in applications such as games, online stores, scientific visualizations,
and so on. Second, it is becoming easier to create 3D models, using new and im-
proved methods to acquire models from the real world (e.g. using 3D scanners [24],
computer vision [35]), and new modeling tools (e.g. Maya [2], which is now free for
non-commercial use, Blender [13], a free modeling system, Teddy [45], a Java applet
for 3D sketching). The improvement in PC hardware performance also enables many
more people to use these 3D modeling tools to create 3D models themselves. Third,
as is true for all digital data, a lot of these 3D models are available on the web for
free download.

A 3D Model Search Engine

To improve the accessibility of all these online 3D models, we have created a prototype
specialized search engine for 3D models. It supports a text-based query interface and
several different types of shape-based query interfaces. Figure 1.1 shows a screenshot
of the actual search engine web site, with its main components annotated. On the left
side of the page the user can enter queries and specify which database is to be searched
(both free and commercial databases have been indexed). On the right side search
results are shown, as well as links that allow the selection of different query interfaces
and miscellaneous pages with a feedback form, information about our research, and
links to similar projects elsewhere.

Challenges

The challenges in creating such a search engine are threefold. First, the 3D mod-
els available on the web have to be found. Unfortunately, most of the online 3D
models are scattered across the web, on repository sites, project sites, and personal
homepages. Second, it is not obvious what the best query interface is for searching a
database of 3D models. Additionally, an important goal for our search engine is that
it is useable by the average user. By “average user” we mean someone who knows
what “3D” means, and is able to manipulate a 3D model using a viewing interface,
but not necessarily a computer graphics professional. This means that the query in-
terfaces should be intuitive and easy to use. And finally, user-entered queries have to
be matched to 3D models. For each type of query a suitable matching method needs
to be developed. Also, because the search engine is an interactive system, a matching
method has only limited time to run.
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database
selection

2D sketch
areas

search results

query interface selection, miscellaneous links

keyword entry

Figure 1.1: The main components of the search engine web site, with an example text query
“rotor” and its results from a commercial model database provided by De Espona [27]

Query Interfaces

This thesis focuses on query interfaces for our 3D model search engine, and their
corresponding model/query representations and matching methods. 3D models typi-
cally contain textual, appearance (color, texture) and shape information, which can
all be queried. We investigated query interfaces based on text keywords, 3D shape,
2D freeform sketches, and 2D structural input (i.e. sets of parts), and their associated
matching methods. We now describe each query interface in more detail.

Text Queries

Because text query interfaces are very common and potentially very effective, we
developed a text query interface and accompanying matching method for our search
engine (see Figure 1.1 for an example text query “rotor” and the results from a
commercial database provided by De Espona [27]). The interface works as follows.
User-entered keywords are matched to a representative text document, one of which
has been created for each 3D model. This text document contains text from the
model file itself (e.g. its filename, part names) and from the web page it was found on
(e.g. the link text, web page title). A lexical database called WordNet [68] was used
to add synonyms and hypernyms (category descriptors) of the filename or link text

3



Figure 1.2: An example 3D sketch query using Teddy, and the first 12 results

to the representative text document. We investigated the classification performance
of several different text matching methods, operating on all possible combinations of
eight different text sources of a 3D model. We found that the TF/IDF text matching
method [89] produced the best results, and that the text found inside a model file
and the WordNet synonyms and hypernyms were the most useful for classification
purposes.

3D Shape Queries

A defining attribute of a 3D model is its shape. It therefore makes sense to allow the
user to query using shape, for example, by providing a rough sketch of what the de-
sired object looks like. We investigated several shape-based query interfaces, initially
supporting only 3D query shapes: the user may submit an existing 3D model, either
by (1) selecting a 3D model that was the result of a previous search (implemented
as a “Find Similar Shape” link below a thumbnail image of a result, see Figure 1.1),
or by (2) uploading a local 3D model file. A 3D model can also be (3) created from
scratch, using a simple online 3D modeling tool called Teddy [45]. Figure 1.2 shows
an example 3D query shape created using Teddy, and some search results. From the
usage results of our search engine we found that the “Find Similar Shape” method is
the most popular of these three methods. It also generates the most user interest in
the search results, measured by the percentage of searches that result in at least one
model download. The simple 3D modeling tool has so far proven to be too complex
for most users of our search engine.
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2D Sketch Queries

Because of the apparent complexity of the 3D sketch interface, we decided to develop
a simpler 2D sketch based query interface. Here the user can submit freeform sketches
of a target object as seen from up to three directions. It is similar to the pen-drawing
interface in Paintbrush-style programs: pixels can be drawn by dragging the mouse.
The sketches are matched to several 2D projections of each 3D model using an image
matching method. An example 2D sketch query and some results are shown in Figure
1.3.

Figure 1.3: An example 2D sketch query and its results

Based on the results of a user study in which subjects were asked to draw several
sketches of various objects, we decided to match these sketches to exterior outlines
of 2D projections of the 3D models in our database. All possible pairings of user
sketches to these projections are compared, with individual pairs of images being
matched using an existing image matching method. The question then arises from
which viewpoints 2D projections of a 3D model should be stored. We created thirteen
2D projections for each 3D model, subdivided into side views (three, looking from
the center of the side of a bounding cube towards its center), corner views (four,
from the corners), and edge views (six, from the edges). All possible combinations
of using side, corner, and edge views were evaluated by running classification tests
using a test database of 1,093 models donated by Viewpoint [107], classified into 84
categories. We found that using the side and corner views, and matching models
by finding the best-matching three out of those seven views, resulted in the best
classification performance, which was still worse than that of the 3D shape matching
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method, however. Furthermore, the matching performance of the online 2D sketch
interface is negatively affected by the poor quality of the sketches that are submitted:
they are often inaccurate and contain interior detail. The image matching method
we use is very sensitive to interior detail, and as a consequence, searches using the
2D freeform sketch interface result in very few model downloads.

2D Structural Queries

We attempted to circumvent the drawback of having to draw exactly the right image
by developing a 2D structural query interface. There are many objects that belong
to the same class, but look slightly different because of variations in the size, shape,
position, and orientation of their parts (e.g. humans, tables, helicopters). Further-
more, evidence has been presented in the perception literature that humans think of
shape as composed of a set of simpler, basic shapes. Biederman showed in his seminal
“Recognition by Components” experiments that humans tend to partition shape into
convex parts, whose boundaries are recognized near regions of deep concavity [11].
To capture this notion in a shape query interface, we developed a parts-based query
interface and accompanying matching method, in which the user provides a 2D struc-
ture. Initially we experimented with an interface based on drawing sets of ellipses
(see Figure 1.4 for an example query).

Figure 1.4: An example parts-based query of a 2D structural query interface

The ellipses of a query are placed into a tree structure using heuristics based on
size and distance. Each ellipse (except the root) is then parameterized in terms of
its parent. A set of ellipses is matched to a 2D projection of a 3D model by running
a non-linear optimization that minimizes an error-of-fit function. This function re-
wards (1) ellipses overlapping the 2D image and (2) ellipses aligning with the local
maxima of the Euclidian Distance Transform of the image, i.e. with the Medial Axis
of the image [14]. This second term takes advantage of the structural significance of
the Medial Axis, without suffering from its sensitivity to noise (a common problem
of matching methods using the Medial Axis). The error-of-fit function also penalizes
ellipses overlapping each other, and excessive part deformation. The method param-
eters were optimized for classification using a training set of 75 3D models classified
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into 15 categories of 5 models each. The method was evaluated using a test set of
the same size. We found that for certain classes of objects, this matching method
can improve classification performance over an image matching method. Objects of
these classes usually have a clear, similar structure, and a relatively large variation
in their parts (e.g. tables). However, the non-linear optimization is computationally
expensive, and as a result this method is not yet suitable for use in an interactive
system.

Matching Methods Comparison

We compared the classification performance of the three matching methods we use
for our online 3D model search engine (i.e. text-, 3D shape-, and 2D shape-based).
For this comparison we used a test database of 1,000 3D models downloaded from
the web and classified into 81 categories. This test database was created using our
full database of 31,000 downloaded models as a source, and as such is representative
of the kind of data we have to process.

In a classification test, a similarity score is computed for each model by com-
paring its representation (e.g. representative text document, 3D shape descriptor) to
that of all other models. The models are then ranked by their similarity score, and
precision/recall values for this model are computed. Precision values are averaged
over all models. For an explanation of the precision/recall performance metric see
Appendix A.

We found that the 3D shape-based matching method significantly outperform
text-based matching. This is mainly due to the insufficient text annotation of models
found on the web. They are often contained in lists, annotated with their filename
or a thumbnail image only. The text-based matching still outperforms the 2D shape-
based method. Also, we found that by combining the matching scores of the text-
and 3D shape-based methods, classification performance improved even further.

The Online Search Engine

Each query interface, except the one based on 2D structure, has been available online
on our search engine site (at http://shape.cs.princeton.edu) for about a year
and a half, yielding extensive usage results. We use the percentage of searches (of a
particular query type) that result in at least one downloaded model as an indication
of the user interest in the search results, and hence the quality of the results. We
found that the text-based search and the “Find Similar Shape” search (in which a
result from a previous search is submitted as a 3D shape query) generated the highest
percentage of model downloads. These were also the most popular query interfaces.
The sketch-based interfaces (both 2D and 3D) resulted in the smallest percentage of
downloads. Currently (May 2003), the search engine has a steady number of visitors,
processing about 4,000 searches per week from about 1,200 different hosts, with a
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total of almost 300,000 processed queries and over 53,000 model downloads. About
25% of the visitors each day are returning users.

Summary and Outline

Now we summarize the main conclusions of this thesis. First of all, 3D shape match-
ing outperforms text matching in classification tests of models downloaded from the
web, mainly due to the insufficient text annotation of web models. The 2D shape-
based matching method performed worse than the text matching method. Combining
matching scores of the 3D shape- and the text-based matching methods further im-
proves classification performance. For certain classes of objects, a method based
on matching 2D structural representations produces better results than one based on
matching images. Finally, the practical result of this work, an online 3D model search
engine, has proven to be useful to the general public, evidenced by the large number
of users and model downloads, and the large percentage of returning users.

This thesis is organized as follows. The following chapter discusses related work
in content-based retrieval, including other 3D model search engines. The next four
chapters examine four types of query interfaces: text, 3D shape, 2D sketch, and 2D
structure, respectively. The matching methods we use and some combinations are
compared in Chapter 7. Usage results of our search engine are in Chapter 8, followed
by conclusions and future work in Chapter 9. A discussion on the precision/recall
metric used throughout this thesis may be found in Appendix A. Finally, Appendix B
has implementation details.
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Chapter 2

Related work

2.1 Introduction

To help cope with the unprecedented increase in the amount of available online infor-
mation, many different search engines have been created. In its most general form,
a search engine is a program that facilitates access to a database, consisting of a
front-end where a user can enter a query, and a back-end that performs the actual
search. The front-end is called the query interface. This query interface can be made
available through a web page, making it possible to access a database from anywhere
on the internet. For example, such a page could allow a user to search in a national
phonebook or a product catalog, from any internet-connected PC.

If the database being searched contains data collected from other sites on the
web, we call the search engine a web search engine. From here on, we will take
search engine to mean web search engine. Search engines can be classified as general
or specialized. Specialized search engines index data from a specific domain (e.g.
paintings, molecules, research papers), as opposed to general search engines, which
attempt to index a broad range of information. An important advantage of specialized
search engines, of which our 3D model search engine is an example, is that they can
have a domain specific query interface. A query for a painting, for example, could be
a simple 2D sketch.

Search engines may be classified by the type of information they index, and the
types of queries they support. Table 2.1 lists a few examples of search engine sites,
for three types of information (text, 2D image, and 3D model) and three query data
types (text, 2D shape, 3D shape).

The remainder of this chapter is organized by these information types: the follow-
ing three sections discuss related work in search engines and matching methods for
searching text, 2D images, and 3D models, respectively.
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information type →
↓ query type

Text 2D Image 3D Model

MeshNose [67],
Text Google, CiteSeer Google Image

CADLib [19]
Taiwan Univ. [20],

2D Shape × QBIC [33]
Princeton [36]

ShapeSifter [23],
3D Shape × ×

Ogden IV [101]

Table 2.1: Some examples of search engines for combinations of the type of information
indexed, and the type of query supported

2.2 Text Search Engines

Most of the online information exists in the form of text, which is why the largest
and the most popular search engines are text-based. Forerunners in this area are
large text-based general search engines such as Google [17] and Altavista [3]. There
also exist specialized search engines for textual information. Examples are CiteSeer,
a search engine for scientific papers [16], and HomePageSearch, for homepages of
computer scientists [40].

Because these sites index text, their query interfaces are usually text-based as
well. This means that user-entered text keywords have to be matched to an index
of the text database. In this thesis, we will not investigate text query interfaces and
matching methods in detail, but instead rely on existing work to select an appropriate
matching method for our text query interface. We refer the interested reader to the
large body of work in the indexing and matching of text documents. Seminal works
include the books by Gerard Salton [88, 89], and many papers from the proceedings of
the Text REtrieval Conference (TREC [104]) and the conference of the ACM Special
Interest Group on Information Retrieval (SIGIR [94]).

Subject indices such as Yahoo [110] are no search engines because no search is
performed: links to web pages are organized into a hierarchy (either manually or
automatically), which the user can browse. This kind of interface is often used for
accessing 3D model collections, however (also see Section 2.4.1).

2.3 2D Image Search Engines

Many search engines index non-textual data, such as images and sounds. In this
section, we discuss related work in image search engines, subdivided into searching
using associated text and using image content.
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2.3.1 Text-based

Probably the largest site for searching images using text keywords is Google’s image
search. Unfortunately, no publications are available about the method they use. One
of Google’s FAQ pages states [38]:

“How does image search work? Google analyzes the text on the page
adjacent to the image, the image caption and dozens of other factors to
determine the image content. Google also uses sophisticated algorithms to
remove duplicates and ensure that the highest quality images are presented
first in your results.” (April 4, 2003)

This suggests that heuristics are used to determine potentially relevant text related to
an image, for example, the image filename, link text, and web page title. Each source
is probably assigned a different weight, depending on its importance, similar to how
the main Google search site assigns weights to text terms depending on whether they
are in the title, headers, and so on.

In related work, Sable and Hatzivassiloglou investigated the effectiveness of using
associated text for classifying images from online news articles as indoor or out-
door [86], and found that image captions can be used to achieve an accuracy close to
that of a human. An image-based classifier was less accurate.

2.3.2 Content-based

A lot of previous work has been done in content-based image retrieval (CBIR), where
typically the user sketches a rough approximation of the desired image, which is
then matched to images in a database. For surveys of CBIR methods and systems,
see [7, 65, 96, 100, 106]. The methods vary by what the user input should be (e.g.
arbitrary images, basic shapes, strokes), and how the sketches are matched (using low-
level (statistical) or high-level (structural) matching). Because we cannot make as-
sumptions about the position, scale, or orientation of the user input nor the database
images, most methods attempt to be invariant under similarity transformations (i.e.
translation, scale, rotation). For example, invariance to translation can be achieved
by aligning the center of mass of the images to be matched, or by computing features
that do not depend on image position (e.g. depending on the image boundary alone).
A few examples of CBIR methods and systems follow.

Image Input

Matching pixels
In the Query by Visual Example (QVE) interface by Kato et al., the user draws

a simple binary sketch, which is then matched to edges detected in database images
using pixel-by-pixel comparisons [53]. The matching score is computed by subdi-
viding both images into 64 grid cells of 8×8 pixels each, and then adding for each
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cell a weighted combination of the number of matching image pixels, the number of
matching background pixels, and the number of mismatches. To allow for inaccura-
cies, a query cell may be translated by up to δ pixels in the vertical, and ε pixels in
the horizontal direction. The (δ, ε) combination with the best score is picked. As a
result, this matching method is not invariant under similarity transformations. Also,
the compensation for small differences in both images is limited to small translations
in arbitrary rectangular parts of one image.

Matching wavelet signatures
A CBIR system using image matching is presented by Jacobs et al. [48]. Using

their query interface the user can draw simple images using colored brush strokes.
An image matching method based on comparing wavelet signatures is used to find
the most similar images in a database. The matching method is quite sensitive to
similarity transformations.

Matching edges using Fourier descriptor of boundary function
The Netra system by Ma and Manjunath also supports shape matching [63]. Edges

are detected in a query image, which are then combined into closed contours. Next,
shape descriptors are computed using the amplitudes of the Fourier transform of three
types of boundary functions (with normalized arc length as a parameter): curvature,
centroid distance and complex coordinate functions. Two descriptors are compared
by computing their Euclidian distance.

Matching edges using histograms
For example, Huet and Hancock compute histograms of relative angles between

pairs of line segments extracted from an image [42]. This still requires a step in which
edges are extracted from the image, however.

Shape Input

Matching feature vectors of polygons
An example of a system which uses high-level matching is the shape matching

component of the Query By Image Content (QBIC) project by Faloutsos et al. [33].
The user inputs a 2D polygon, which is converted to a feature vector (with features
such as area, circularity, and major axis orientation). This vector is then matched to
feature vectors of the outline shapes in a database. Some results are presented for
performing six queries on a database of 259 airplane silhouettes.

Matching position and size of colored regions
In the VisualSEEk system the user can draw multiple regions of a certain color, and

specify their spatial relationships [98]. Matching these regions to database images is
done by comparing the position and size of the region’s minimum bounding rectangles,
and the ordering of the regions when they are projected onto the x and y axis (making
the method orientation dependent).
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Matching binary shapes using feature vectors, deformable templates, strokes
A recent application area of CBIR is trademark retrieval. Proposed new trade-

marks have to be sufficiently dissimilar from existing ones in order to be accepted for
use. Jain and Vailaya use a two-stage approach, in which first feature-based matching
is used to select a small number of potential matches from a larger database. Next,
the boundary contour of a query is matched to this smaller set using deformable
template matching [49]. Recently, Leung and Chen proposed converting trademark
images into “strokes” (primitives such as circles, polygons, and lines), each with an
associated confidence measure [60]. Segments of a trademark image are stored either
as contours or skeletal edges (found by thinning the segment). A dissimilarity score
is computed for two sketches based on similarity of corresponding strokes, and the
distance between their centers.

Matching binary shapes using statistical matching
Other methods compute statistical invariants (i.e. features invariant under simi-

larity transformations) of the image. Examples are moment invariants such as regular
moments [79], Zernike moments [56], or invariants based on a decomposition in An-
gular Radial Transform (ART) basis functions (as used in the MPEG-7 region based
descriptor) [15]. However, low order moments (e.g. principal axes) tend to be sensi-
tive to the location of subparts in an image, and higher order moments are sensitive
to noise.

A method developed by Michael Kazhdan is less sensitive to noise and the location
of subparts [36]. Briefly, after normalizing for scale and translation, the Euclidian
Distance Transform (EDT) of a 2D binary image is intersected with concentric circles,
yielding a function on each circle. The amplitudes of the Fourier decomposition of
each function are used as a 2D shape “signature”. By just using the amplitudes the
method is less sensitive to the location of subparts, and using the EDT makes it less
sensitive to noise. This method is described in more detail in Section 5.3 and in [36].

2.4 3D Model Search Engines

Many web sites allow users to find 3D models. Examples are online repository
sites, such as 3D Café [1] and Avalon [9], or 3D modeling company sites, such as
Cacheforce [18] and Viewpoint [107]. Other sites, such as CadLib [19] and Mesh-
Nose [67], index multiple 3D model collections.

These sites can be classified according to the ways available to the user for search-
ing the database.

2.4.1 Browsing a Hierarchy

Most 3D model repositories provide a browsing interface, where the user finds the
desired model by traversing a hierarchy, selecting the right keyword at each level.
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This interface has several drawbacks, however: (1) it requires that the models be
manually organized in a hierarchy, which may be impractical for large databases,
(2) an object may be a member of more than one class, (3) the user has to know
beforehand which class a model is in, and (4) the possible results are restricted to
members of semantic classes. If, for example, the user would like a list of stick-
like objects, this will require browsing many classes that could contain such objects
(lamps, swords, rifles, etc.). While browsing of a hierarchy may be useful for some
applications, we have not investigated its use in our 3D model search engine.

2.4.2 Searching by Text Only

Other sites index 3D models using only text. Examples are CADlib [19], Mesh-
Nose [67], and the National Design Repository [31, 81], which index multiple 3D
model collections. CADlib indexes a description, filename, id number, etc., of each
CAD model. MeshNose simply indexes text that was found on the web pages of sev-
eral 3D model repository sites. The National Design Repository allows searches by
text keyword (querying the part name or filename), and by file type and size, or by
browsing through directories.

2.4.3 Searching by Shape

Recent 3D search engine sites allow searching based on shape and/or shape features.
For example, at the “ShapeSifter” site of Heriot-Watt University [23], the user can
select from a long list of shape features, such as surface area, bounding box diagonal
length, and convex hull volume, and perform a search with conditions on these fea-
tures. The search is in a CAD test database with 102 L-shaped blocks and several
transformed versions of about 20 other models. Figure 2.1 shows an example in which
a CAD part is submitted as a shape query.

In the online demo of the commercial system “Alexandria,” the user can set
weights of individual model attributes (for example “geometry,” “angular geometry,”
“distributions,” and “colour”) to be used in matching, and search in a database of
4,500 commercial models (the database does seem to contain many identical models
in different orientations, however) [74]. See Figure 2.2 for an example search us-
ing “Ephesus” (an online lightweight version of Alexandria), starting from a random
model.

In the experimental system “Ogden IV,” [101] the user can choose between match-
ing grid-based and rotation invariant feature descriptors at several different grid res-
olutions, and search a database of 1,500 VRML models, which are not available for
download. Figure 2.3 shows an example shape search starting from a random model.

At the experimental site “3D Shape Retrieval Engine” of Utrecht University [102,
105], the user can pick a query model by number, and one of three matching methods
(Gaussian curvature, Normal variations, Midpoints) and one of three test databases:
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(a) (b)

Figure 2.1: An example query using the “ShapeSifter” site of Heriot-Watt University [23].
The object marked in (a) is selected as a query. The closest matches are shown in (b)

Figure 2.2: An example search using the “Ephesus” system [74]

(1) a database of 133 web models collected from the web by Osada et al. [72], (2)
a database of 684 models (containing 366 airplanes) the authors collected from the
web, and (3) the same database of 102 L-shaped blocks used in the ShapeSifter site.
Figure 2.4 shows an example search using this site.

Another experimental site of the Informatics and Telematics Institute (ITI) in
Thessaloniki, Greece, indexes 37 VRML models [47, 57]. The user can select one of
these models, which is then matched against the other 36 using shape descriptors
based on a set of geometric features. Figure 2.5 shows an example query and some
search results.

The “Visual Query Interface” system at Arizona State University provides an
elaborate 2D sketching interface for drawing the outline curve of a ceramic vessel [80,
84]. A user-drawn curve is matched to a database of outline curves of scanned 3D
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models of vessels. Figure 2.6 shows an example query being constructed with this
system.

A “3D Object Retrieval System” from National Taiwan University [20] supports
a few query methods similar to ours: the user can enter text keywords, and draw one
or two 2D sketches (not outline sketches, but filled-in shapes), or select a result model
from a previous search as a query. The 2D sketches are matched to 2D projections
of a 3D model as seen from the vertices of a dodecahedron, with an image matching
method using the MPEG-7 region based descriptor [95]. 3D models are matched
using the same 2D projections. The model database has 10,000 models, manually
downloaded from the web. See Figure 2.7 for an example 2D sketch query using this
system.

Figure 2.3: An example search using the online “Ogden IV” system [101]

Figure 2.4: An example search and some results from Utrecht University’s 3D Shape
Retrieval Engine [102, 105]
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2.4.4 Overview of Current 3D Search Engines

Table 2.2 shows for each search engine site the number of models it indexes, whether
these are freely available, and the types of query interfaces it supports. As can be
seen from the table, our search engine provides one of the most comprehensive studies
of alternative query interfaces and public access to the largest database of free models
on the web.

Figure 2.5: Example results from ITI’s 3D Search site when searching for the Lego man
model on the left [47, 57]

Figure 2.6: Example outline sketch query for a 3D ceramic vessel using Arizona State
University’s “Visual Query Interface” [80, 84]

17



Figure 2.7: Example results from a 2D sketch query at National Taiwan University’s 3D
Object Retrieval System [20]

Alexandria Arizona ITI Ogden ShapeSifter Taiwan Utrecht Princeton
Nr of models ∼ 4,500 94 37 ∼ 1,500 ∼ 122 ∼ 10,000 919 ∼ 36,000
Free models 0 0 All 0 All All 0 ∼ 31,000

Query Types:
Text No No No No No Yes No Yes

2D Sketch No Yes No No No Yes No Yes
Result Model Yes No Yes Yes Yes Yes Yes Yes

Upload Model No No No No No No No Yes
3D Sketch No No No No No No No Yes

Other visual & geometric No No geometric No No No
geometric data, features
features metadata

Table 2.2: Current 3D model search engines, their model database size, the number of
freely downloadable models, and supported query interfaces

18



Chapter 3

Text Query Interfaces

3.1 Introduction

Searching based on text keywords is by far the most common type of query interface
available on the web (which is no surprise since most information is stored as text).
The most popular search sites on the web are text based (for example, Google [17] and
AltaVista [3]), as well as many sites that provide a search function for a single site.
As a result, people are used to text-based queries and relatively skilled at creating
queries that produce the desired result. Another consequence is that much research
in information retrieval has been aimed at developing effective text retrieval methods.

For these reasons, we decided to implement a text query interface and accompa-
nying matching method for our 3D model search engine. User-entered text keywords
are matched to a representative text document created for each 3D model. This doc-
ument can be created from many potential sources, both from the model file itself as
well as the web page it is linked from. A 3D model file has a filename and typically
contains part names, material names, and metadata, such as a short description of the
model and the name of its author. From the web page, more text is available in the
link text, the context near the link, and the web page title. We added a text source
by including synonyms and hypernyms (category descriptors) of the model filename
or link text to the representative text document. This was done using WordNet, a
lexical database [68].

It is not obvious which text sources of a 3D model are the most discriminating. For
example, we expect both the filename of a model and the link text on the web page to
be useful for retrieval purposes. But, we do not know which source generally provides
the most information (e.g. filenames may be abbreviated because of a filename length
limit). Using a test database of 1,000 models downloaded from the web (described
in detail in Section 7.2), classified into 81 categories, we investigated which text
sources of a 3D model were most effective for classification. All combinations of eight
available text sources of each 3D model were evaluated. We found that the text from
the model file itself (e.g. part names, metadata) and the WordNet synonyms and
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hypernyms provided the most information for classification purposes.
Instead of implementing a text matching method ourselves, we use the methods

provided by the Bow toolkit [66], a freeware software package for statistical text
analysis. Seven different matching methods supported by this package were evaluated.
From these experiments, we found that for our database the “Term Frequency/Inverse
Domain Frequency” method (TF/IDF, described in Section 3.3) produced the best
classification performance.

In the next section we describe the available text sources of a 3D model in more
detail. In Section 3.3 we select the best performing text matching method for our
application, using our test database of 1,000 models. Next, we evaluate the influence
of the individual text sources on classification performance. The last section has a
summary and some conclusions.

3.2 Representative Text Document

A representative text document is created for each 3D model in our database, using
several potentially relevant text sources. Because we are indexing 3D model files
linked from a web page, we are able to extract text from both the model file itself
as well as the web page (note that because we convert all models to the VRML 2.0
format, we only refer to text sources of this format). The following list describes the
text sources we use:

From the model file:

1. model filename: The filename usually is the name of the model. The extension
determines the filetype. For example, alsation.wrl could be the filename of a
VRML file of an Alsation dog

2. model filename without digits: From the filename we create a second text
source, because very often filenames contain sequence numbers (for example,
chair2.wrl) that are useless for text keyword matching

3. modelfile contents: This includes labels, metadata, filenames of included files,
and comments. In VRML, it is possible to assign a label to a scenegraph node (a
part of the model) and then re-use that node elsewhere in the file. For example,
in a model of a chair, a leg can be defined once, assigned the identifier LEG, and
then re-used three times to create the remaining legs. As such, these identifiers
typically describe names of parts of the model. To describe metadata, a VRML
2.0 file may contain a WorldInfo node (the Info node in VRML 1.0), which
is used to store additional information about the model, such as a detailed
description, the author name, etc. Filenames of included files can be names
of other model files, textures, or user-defined nodes. Finally, a model file may
contain descriptive comments. The model file comments were left out from our

20



experiments because we found that many files contain commented-out geometry,
which, when included, would add many irrelevant keywords

From the web page:

4. link text: This is the descriptive text of the hyperlink to the model file, i.e. the
text between the <a> and </a> HTML tags. For example: <a href="747.wrl">a

VRML model of a Boeing 747</a>

5. URL path: These are the directory names of the full URL to the model file.
If multiple models are organized in a directory structure, the directory names
could be category names helpful for classification. For example, as in the URL
http://3d.com/objects/chairs/chair4.wrl

6. web page context (text near the link): This text, which we define to be
all plain text after the </a> tag until the next <a href> tag (or until the next
HTML tag if there is none), may also refer to the model. This text could for
example read “1992 Boeing 747-400 passenger plane, 210K, created by John
Doe”. Context found before the link text was found to be mostly irrelevant

7. web page title: For example, “VRML models of airplanes”

Additional text source:

8. Wordnet synonyms and hypernyms: We create an additional eighth text
source by adding synonyms and hypernyms (category descriptors) of the file-
name using WordNet, a lexical database [68] (if no synonyms or hypernyms
can be found for the filename, the link text is tried instead). In related work,
Rodriguez et al. use WordNet synonyms [26], and Scott and Matwin use syn-
onyms and hypernyms [90] to improve classification performance. Recently,
Benitez and Chang showed how WordNet can be used to disambiguate text
in captions for content-based image retrieval [10]. Adding synonyms and hy-
pernyms enables queries like “vehicle” to return objects like trucks and cars,
or “television” to return a TV. WordNet returns synonyms and hypernyms in
usage frequency order, so we can limit the synonyms and hypernyms used to
only the most common ones. Adding these words may also increase the num-
ber of bad matches, however. For example, WordNet returns “extremely low
frequency” as a synonym for “elf”, and as a result the text query “frequency”
returns some models of elves (as well as more relevant, audio related models)

Following common practices from text retrieval, all collected text goes through
a few more processing steps. First, so called stop words are removed. These are
common words that do not carry much discriminating information, such as “and,”
“or,” and “my”. We use the SMART system’s stop list of 524 stop words [88], as well
as stop words specific to our domain (e.g. “jpg,” “www,” “transform”). Next, the
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resulting text is stemmed (normalized by removing inflectional changes, for example
“wheels” is changed to “wheel.”), using the Porter stemming algorithm [77].

3.3 Text Matching Method

To be able to select the best text matching method for our purpose, we first evaluate
the classification performance of several common text matching methods, using the
test database of 1,000 models described in Section 7.2. The implementation we used
is a program called rainbow. It is part of the Bow toolkit, a freely available C library
for statistical text analysis [66]. The toolkit supports many different classification
methods, including TF/IDF [50, 83, 89], Naive Bayes [70], K-nearest neighbors, the
Kullback-Leibler divergence metric [59], etc.

When creating the text index using rainbow, each representative document is
assigned its own class. In this way, when we ask the program later to classify a
query, single models are returned as search results (thus mimicking the search engine
behavior), after which we can use our classification to evaluate the retrieval perfor-
mance. The representative text documents contained every text source described in
the previous section, and were used as simulated user queries. The representative
text document of each model was submitted as a query and compared to all other
documents. All models were then ranked according to their text similarity score.

From these rankings we compute precision/recall values for each model. Appendix
A describes this metric in detail. To briefly review, given a query model from a certain
class of size c, and a number of returned results k, and a number of relevant results
(i.e. models that are members of the same class) within these returned results rel,
then

recall = rel/c

precision = rel/k

A perfect classification method would always return objects from the same class as
the query object in the top c results. In this case the precision would be 1.0 for each
recall value, and the precision/recall plot a horizontal line at y = precision = 1.0.
In practice the goal is to achieve as high as possible precision values. For 20 recall
intervals in the range [0, 1], precision values are averaged over all models. The average
over all models is called the micro-average. A macro-average is computed by first
computing the average of each class, which are then averaged. For each test, macro-
averages were also computed to verify that they showed the same qualitative behavior.

Figure 3.1 shows the resulting precision/recall graphs for seven different text
matching methods (two variations of Naive Bayes, three of TF/IDF, K-nearest neigh-
bors, and Kullback-Leibler), and a method which returns random results for compar-
ison. The other methods provided by the rainbow program were also tested but failed
to run to a finish.
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Figure 3.1: Average precision/recall for seven different text matching methods, and random
retrieval

From this graph we see that “TF/IDF log occur” and “TF/IDF log words” show
the best performance for our test database. We currently use the latter method
for our search engine. The TF/IDF method assigns a vector of term weights to
each document. A term’s weight is based on its frequency in the document (Term
Frequency (TF), higher is better), and its frequency over all documents (Inverse
Document Frequency (IDF), lower is better, in other words, terms that do not appear
in many other documents are more discriminating). More precisely, the weight is set
to tf log(N/df), where tf is the term frequency in a document, N is the number of
documents, and df is the term frequency over all documents [89]. In the rainbow
implementation, the first term is log(tf + 1) instead of tf . For the “TF/IDF log
occur” method, the document frequency is the number of documents in which a term
occurs at least once. For the “TF/IDF log words” method, it is the total number
of times a term occurs in all documents. Classes are represented by the sum of the
vectors of their individual documents. The similarity score between two vectors is
simply the cosine of the angle between them.
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3.4 Selection of Text Sources

Now that we have identified the available text sources and the matching method to
use, we would like to determine the relative importance of each source. In related
work, Sable and Hatzivassiloglou investigated the effectiveness of using associated
text for classifying images from online news articles as indoor or outdoor [86]. They
found that limiting the associated text to just the first sentence of the image caption
produced the best results. They further improved performance by using just open-
class words (adjectives, nouns, verbs and adverbs) and prepositions from the source
text, normalizing category vectors, and by using a probability density function to
estimate the likelihood that a query belonged to a certain class. In other work, Sable
et al. use Natural Language Processing (NLP, e.g. identifying subjects and verbs)
to improve classification performance of captioned images into four classes [85]. Our
problem is more difficult since our source text is less well-defined, and our number of
classes is much higher. Modifications such as just using open-class words could still
be helpful, however, and are the subject of future work.

To determine the most useful combinations of text sources, we ran a classification
test for each combination of n out of the eight text sources, with n ∈ {1, ..., 8}. The
total number of combinations tested was

8∑
n=1

(
8

n

)
= 255

Table 3.1 shows the average precision achieved for the top 10 combinations (the num-
bers shown in the combinations refer to the numbers in Section 3.2). From this data,
we see that adding as many text sources as possible improves overall performance,
in general. This may be explained by our observation that the addition of keywords
helps classification performance if the keywords are relevant, but does not hurt per-
formance if they are irrelevant, since they do not match many other models. We
expect that as the database size increases, this property will no longer hold because
irrelevant keywords would generate cross-class matches.

Looking more closely at how often each source occurs in the best combinations,
we counted the number of times each source appears in the best 50 and the best 100
combinations. The results are shown as percentages in table 3.2. Clearly, and perhaps
surprisingly, the identifiers found inside a 3D model file provide the most information
for classification. The WordNet synonyms and hypernyms also turn out to be very
useful, despite the fact that for 313 models (31%) no synonym or hypernym was found
(model names for which WordNet did not return a synonym or hypernym included
names (e.g. “justin”), abbreviated words (“satellt”), misspelled words (“porche”),
words in a different language (“oiseau”), and so on). The number of synonyms and
hypernyms used does not greatly affect classification performance. We tested all
combinations of 1-5 synonym senses and 1-5 hypernyms of these senses, and found
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rank combination average precision
1 1234678 0.354
2 123478 0.353
3 12345678 0.351
4 234678 0.350
5 1234578 0.349
6 123678 0.349
7 23478 0.348
8 134678 0.348
9 1235678 0.347
10 12378 0.346

Table 3.1: The average precision values achieved for the ten best combinations of text
sources. The numbers in a combination refer to the numbers in Section 3.2

source percentage in top 50 percentage in top 100
synonyms and

hypernyms
100 84

modelfile 100 79
filename

without digits
64 65

filename 62 58
page title 54 61

link 54 57
page context 52 52

path 50 51

Table 3.2: Percentage of all occurrences of each text source appearing in the best 50
and the best 100 combinations

no significant performance improvements. Because Wordnet returns word senses in
usage frequency order, it does make sense to limit the number of senses to avoid
including synonyms that are relatively obscure. Currently we store the synonyms of
the first three senses, and the hypernyms of only the first sense.

Next, we investigated if we could improve classification performance by adjusting
the weights of each text source. Because the TF/IDF method computes a term’s
weight (i.e., importance) from its frequency, we can increase the weight of a text
source by simply including it multiple times in the representative text document. In
the previous experiments, all text sources were included once. We experimented with
many different weight settings, but found no significant improvement in classification
performance.

However, we still assign different weights to each text source based on assumptions
about which text source is likely to have the most relevant information. For example,
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if the user enters a keyword “plane”, we prefer it if the search engine returns models
with the filename “plane”, instead of models which have this word in the model
file itself. For the same reason, the extension of a filename is added separately and
assigned the highest weight, to favor the restriction to a subset of the model database
containing models of the requested type.

3.5 Summary and Conclusions

Both because text query interfaces are popular and easy to use and because a lot of
textual information may be available for a 3D model downloaded from the web, we
added a text query interface to our 3D model search engine.

User entered text keywords are matched to representative text documents, one
for each 3D model in the database. These documents are created from text sources
both from the model file itself (e.g. its filename) as well as the web page it is linked
from (e.g. the web page title). For the implementation, we use a program called
rainbow, which is part of the Bow toolkit, a freely available C library for statistical
text analysis [66]. We evaluated the classification performance of 7 different text
matching methods supported by this toolkit, and found that the “TF/IDF log occur”
and “TF/IDF log words” methods produced the best results.

Another experiment showed that the model file contents and Wordnet synonyms
and hypernyms of the filename or link text provide the most information for clas-
sification purposes. We found that by weighing different text sources differently,
classification performance could not be improved. However, again to improve the
search engine results, text sources were assigned different weights (such that, for ex-
ample, finding a user keyword in the model filename carries more weight than finding
it in the model file contents).

In many cases, a search based on a few text keywords is very effective. Objects
that have a well-defined, unique name (e.g. “dna,” “fork”) are usually easy to find.
However, text-based search is not without problems. We found that 3D models on
the web are usually poorly annotated, which limits retrieval performance. Of the
model names we encountered, many were meaningless (“el2out” for an elephant),
in a different langauge (“carra” for a train car), misspelled (“ferrair” for a ferrari),
too specific (“camaro” for a car), or not specific enough (“test” for a room model).
Furthermore, the user may not know the correct name of an object, or its name may
be ambiguous (e.g. “plane”). Also, it may be difficult to describe certain properties
of a 3D model using text (for example, “a chair with a straight back and slats in the
back”).

For all these reasons, we think that there are many cases where queries based
on text alone are insufficient, and other attributes of a 3D model (i.e. its shape and
appearance) should be queried as well. In the following chapters, we will investigate
several shape-based query interfaces.
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Chapter 4

3D Shape Query Interfaces

4.1 Introduction

In this chapter, we examine 3D shape query interfaces for our 3D model search engine.
Because our database contains 3D shapes, it makes sense to support other 3D shapes
as queries. This means that the user provides a 3D model that has a shape similar to
the desired model. This 3D query model is then compared to the 3D models in the
database using a shape matching method, after which the most similar shapes are
returned. When designing this type of interface, we need to answer two important
questions: (1) how should query shapes be created?, and (2) what method should be
used to compute 3D shape similarity?

Regarding the creation of queries, it should be simple to quickly specify a 3D
shape similar to the shape of the desired 3D model (i.e. simple enough for the average
user). To this end, we provide a way to submit results from an earlier search as
queries, simply by clicking a link underneath a thumbnail image of a search result
(the “Find Similar Shape” link). Also, the user can upload a local 3D model file, if
available. However, a suitable search result or local model file may not be available.
In this case a query must be created from scratch, using, for example, a 3D modeling
tool. For our application such a tool should be easy to learn and use, and it should be
possible to quickly specify overall shape, yet detailed enough to retrieve the desired
3D model. For this purpose we provide a simple 3D sketching tool (“Teddy,” a 3D
sketching Java applet created by Takeo Igarashi [45]).

The second issue is how to compare 3D shape queries to the 3D models in our
database. We selected a matching method that compares feature vectors computed
using spherical harmonics, developed by Kazhdan [54]. Its properties suit our ap-
plication: the feature vectors (or “shape descriptors”) are efficient to compute and
compare, are invariant under similarity transformations (after normalization for trans-
lation and scale), and can be computed for arbitrary polygonal models. This method
was shown to outperform many other shape matching methods in classification ex-
periments on a large test database [36].
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We evaluated the effectiveness of our 3D sketching query interface by classifying
1,000 3D sketches submitted to our online search engine during a period of six months.
We found that about 90% of these query shapes were unidentifiable blobs or sticks.
The search results of these queries generated little user interest: for example, only
3% of the queries was followed by at least one model download. This shows there is
still much room for improvement for our 3D sketching interface.

In the next two sections we describe the three 3D shape query interfaces of our
search engine. Section 4.4 briefly reviews the 3D matching method we use. Section
4.5.1 reproduces a comparison of 3D matching methods from Funkhouser et al. [36].
The test database used for these experiments is described in detail, as it is also
used for experiments presented in Section 5.5 in the next chapter. An evaluation of
3D sketches submitted to our search engine appears in Section 4.5.2, followed by a
summary and conclusions in Section 4.6. For usage results of these interfaces, see
Chapter 8.

4.2 Submitting Existing 3D Models

Perhaps the simplest method to provide a 3D shape is to submit another, existing
3D model file. For the query to be effective, its shape should be close to that of the
desired model. We support this type of query in two ways. First, the user can upload
a local 3D model file. Second, the user can submit a database model by selecting a
result of a previous search.

Upload Local 3D Model

The user can enter a filename, or browse for one, and upload a 3D model file in
one of several 3D file formats (for example, VRML 2.0, PLY, Wavefront OBJ). The
uploaded file is first converted to only geometry in the PLY format. From this file its
shape signature is computed, which is then compared to the database signatures.

Select Result Model from Previous Search

This search option is implemented as a “Find Similar Shape” link below each result
model’s thumbnail image on a results page. Because the model’s signature is already
present in the signature database, the query interface only has to send a unique model
identifier to the matching process. To improve the matching results, the best matches
for each model may be precomputed in an off-line preprocessing step, using a more
expensive matching method.

Elad et al. present an interesting extension of this query method. On a results
page, the user can mark specific models as “good” or “bad,” after which weights in
the matching function are adjusted appropriately and the matching is repeated [32].
We have not investigated this approach in our system.
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4.3 Sketching a 3D Model

If a 3D model with a shape similar to the desired model is not available, then a 3D
shape query must be created from scratch. We support this by providing a simple
online modeling tool on the search engine site. This tool should be easy to learn (also
for the average user) and enable the quick specification of overall shape. The design
of such a tool is a difficult open problem. Instead of designing it ourselves, we use an
existing simple modeling package in our investigation.

One candidate system was SKETCH, developed by Zeleznik et al. [113]. The user
can draw lines, select and group objects, manipulate the camera, etc., using a 3-button
mouse and the shift key. Primitives are created using gestures. For example, three
non-collinear line segments meeting at a corner generate a box. Other primitives are
cones, cylinders, extrusions, and so on. Most primitives are forced to be axis-aligned.
A set of heuristic rules controls placement of new objects. Objects can be moved,
resized, or rotated, possibly along or around a single constraint axis. An example
object created using SKETCH is shown in Figure 4.1 (a). Igarashi and Hughes later
described a “3D suggestive interface,” in which a user gives hints to the system by
highlighting related parts of a scene, and the system responds by suggesting several
different modeling operations (see Figure 4.1 (b)) [45]. Both these systems are too
complex for our purpose, however. Their user interfaces have many features, and are
likely to be too hard to master for the average user.

A simpler system is Teddy, by Igarashi et al. [46]. The user draws a 2D outline,
which is then extruded into a 3D triangular mesh, with its “thickness” at any point
determined by the local width of the outline. Next, other parts may be attached
(called “extrusions”), or cut out (“extrusions” into the existing shape), or pieces can
be sliced off. Because of its simplicity, the type of shape that can be created is
restricted: simple, blobby objects of genus 0. See Figure 4.1 (c) for an example. A
similar, more flexible modeling interface, based on variational implicit surfaces instead
of a polygonal mesh, was described by Karpenko et al. [52]. Here a model can consist
of multiple parts, which may be individually manipulated, and eventually blended
(Figure 4.1 (d)).

All these modeling systems struggle with the trade-off between ease of use and
the type and complexity of the models that can be created. The goal is to create
a minimal set of intuitive user actions, but large enough to allow the creation of
interesting shapes.

For our 3D sketch query interface, we chose the “Teddy” 3D sketching program
for the following reasons [46]: (1) it is the simplest (it has the smallest number of
features and user interface operations), and (2) hence easiest to learn (recall that our
target user is the “average user”). We simplified the interface even more by removing
the “bend” function, which we thought would be hard to understand for the average
user. We also removed the “style” option, which switches between the default non-
photorealistic rendering style and wireframe, because the wireframe rendering may
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(a) (b)

(c) (d)

Figure 4.1: Example objects created using (a) SKETCH [113], (b) a “suggestive inter-
face” [45], (c) Teddy [46], (d) variational implicit surfaces [52]

be confusing for the user. Finally, (3) a practical advantage of Teddy is that it has
been implemented in Java and the source code is freely available.

4.4 Matching Method

After the query model has been submitted, we have to match it to the 3D models in
our database.

Since these models have been downloaded from a variety of sources on the web, we
cannot assume that they are closed 2-manifold meshes. Most of the models are unor-
ganized sets of polygons (“polygon soups”), possibly with missing, wrongly-oriented,
intersecting, disjoint, and/or overlapping polygons. We also cannot make any as-
sumptions about their scale and orientation. Consequently, the matching method
should be (1) robust under model degeneracies, and (2) invariant under similarity
transformations.

Rather than processing the models themselves for every match, they usually are
converted to a more compact representation (a shape signature or feature vector),
which can be matched more efficiently. Because ours is a real-time application, these
signatures should (3) be fast to compute (because a single one must be computed
for a 3D sketch or an uploaded model file), and (4) be fast to match. Also, the (5)
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signature should be small enough such that it is practical to store tens of thousands
of them. Finally, (6) the matching method should be effective, in other words, the
matching results should correspond to our human notion of shape similarity (this also
means that the shape signature should represent significant shape features).

For our search engine we use a 3D matching method developed by Michael Kazh-
dan [54], which satisfies all the above requirements. The method computes a 2D shape
signature from a 3D model. A shape comparison is then done simply by computing
the Euclidian distance between two shape signatures. The method is (1) robust under
model degeneracies, and (2) invariant under similarity transformations (with normal-
ization for scale and translation). (3) A signature can be computed quickly (2 seconds
on average on a 2.2 GHz Xeon CPU), and (4) matched efficiently (matching a single
descriptor to a database of about 36,000 descriptors takes less than 0.4 seconds). Also,
a signature is (5) compact (about 2 KB). Finally, (6) the method outperforms other
current 3D shape matching methods in precision/recall tests on a large test database
(1,890 models classified into 85 classes, also see the next section)(see Appendix A for
an explanation of the precision/recall performance metric). For full details, see [36]
and [54].

4.5 Results and Discussion

This section presents matching performance results of the 3D shape matching method
we use, and some results on the usage of the 3D sketching interface of our search
engine.

4.5.1 3D Shape Matching

In this section we compare the classification performance of our 3D shape matching
method with that of several other methods. These results were presented in more
detail in Funkhouser et al. [36].

Test Database

For this experiment, we used a test database with 1,890 models of “household” and
“miscellaneous” objects provided by Viewpoint [107]. Objects were clustered into 84
classes based on functional similarities, largely following the groupings provided by
Viewpoint. Examples from ten representative classes are shown in Figure 4.2.

Out of the 1,890 models, 653 were put into a “miscellaneous” class because they did
not fit into any meaningful class. An additional 144 models in 51 classes were added
to the “miscellaneous” class because these classes were smaller than our size limit of
5 models. This left 1,093 models in 84 classes. Table 4.1 lists all classes and their
sizes, and Figure 4.3 shows a histogram of the class sizes (except the “diningchair”
class).
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153 diningroom chairs 25 livingroom chairs 8 chests 16 beds 12 dining tables

36 end tables 39 vases 27 bottles 9 chandeliers 5 candelabra

Figure 4.2: Samples from ten representative classes from the Viewpoint “household” and
“miscellaneous” database (images courtesy of Viewpoint)

name size name size name size name size
armoire 9 chest 8 fork 8 plate 8

axe 12 clock 14 fruit 16 plateoffood 17
bakingpan 7 coffeemug 10 goblet 19 pot 7
barchair 6 coffeetable 19 grandfatherclock 5 pumpkin 8
barrel 7 coffin 6 hat 5 refrigerator 7
bartap 6 conferencetable 19 heart 6 rifle 10
bed 16 curtains 7 humanbody 5 shelves 15

beermug 6 deskchair 10 iron 5 shield 9
bench 11 desk 7 key 15 sink 5

bookcase 19 diningchair 153 kitchentable 18 sofa 29
bottle 27 diningtable 12 knife 24 spoon 11
bowl 6 directorchair 5 livingroomchair 25 star 8

boxcontainer 6 dishcabinet 5 loungechair 7 stool 21
buffet 12 displaycase 9 mace 6 suitcase 7
cabinet 41 doorhandle 6 mirror 11 sword 24

candelabra 5 doorknob 5 mopandbroom 7 toilet 5
candleholder 6 dresser 21 ottoman 12 tombstone 7

candle 6 drinkingfountain 6 oven 11 trashcan 20
cannon 5 endtable 36 pictureframe 8 tub 5

cart 6 faucet 5 pistol 5 utensils 7
chandelier 9 fireplace 7 pitcher 8 vase 39

Table 4.1: The 84 classes in our test database of 1,093 models, donated by Viewpoint [107],
and their sizes

We chose this Viewpoint database because it provides a representative repository
of models with uniform quality and because it is difficult for shape-based classification.
In particular, several distinct classes contain objects with very similar shapes. For
example, there are five separate classes of chairs (153 dining room chairs, 10 desk
chairs, 5 director’s chairs, 25 living room chairs, and 6 lounge chairs, respectively).
Meanwhile, there are objects spanning a wide variety of shapes (e.g. 8 forks, 5 cannons,
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6 hearts, 17 plates of food, etc.). Thus, the database stresses the discrimination power
of our shape matching algorithm while testing it under a variety of conditions.
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Figure 4.3: A histogram of the class sizes of the 84 classes in the Viewpoint database. Note
that the “diningchair” class (containing 153 models) is not shown

Each model (except those in the “miscellaneous” class) was used as a query, com-
paring it to each model in the entire database (i.e. all 1,890 models). The resulting
rank of each model was compared to the manual classification.

While the purpose of the experiment is mainly to evaluate our matching method,
the results are indicative of how well our search engine works when a user provides
his own 3D model and asks our system to find similar ones, or when a user clicks on
the “Find Similar Shape” link under the image of an object returned by a previous
query.

For comparison purposes, five other shape matching algorithms were implemented
by Michael Kazhdan: (1) random, (2) moments [32], (3) Extended Gaussian Images
(EGI) [41], (4) shape histograms [5], and (5) D2 shape distributions (D2) [72].

Figure 4.4 (a) shows the average precision/recall obtained with our matching al-
gorithm as compared to the other methods (see Appendix A for an explanation of the
precision/recall performance metric). Results for a single example class (containing
153 models) are in Figure 4.4 (b). Note that for every recall value, our method (spher-
ical harmonics, black curve) gives better precision than the competing methods. On
average, the precision values are 46% higher than D2, 60% higher than Shape His-
tograms, 126% higher than EGIs, and 245% higher than moments. For more details
on each matching method and these results see [36].
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Figure 4.4: Precision/recall plots of our 3D shape matching method versus other methods

4.5.2 3D Sketch Quality

When analyzing logs of our online search engine, we find that the 3D sketching in-
terface is used very little, less than 1.5% of all queries. Furthermore, most of the
queries that are submitted are of very low quality. To get a sense of the quality of the
queries, we classified 1,000 3D sketches submitted in the first half of 2002 into eight
categories. Figure 4.5 shows a representative example of each category, and Table
4.2 shows their relative sizes. From these numbers it is apparent that unidentifiable
blob-shaped models form by far the majority of the queries. As a result, there was
minimal user interest in the search results. For example, only 3% of the queries was
followed by a model download (compared to 13-15% for some other query types).

Figure 4.5: A representative example of each of eight categories for 1,000 submitted 3D
sketches
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Category Percentage
convex blob 52

blob with few concavities 30
stick-like 8
human 3

miscellaneous objects 3
hand 1

star-shaped 1
quadrupeds 1

Table 4.2: Relative sizes of the 3D sketch categories

4.6 Summary and Conclusions

In this chapter, we described 3D shape query interfaces supported in our 3D model
search engine. The simplest ways for a user to submit a 3D shape are (1) uploading
an existing 3D model file, and (2) selecting a result model from a previous search.

Because the average user may not have local 3D model files available, and because
it may be difficult to find a 3D model with a shape close to the desired model using
other search methods, we also provide a query interface with which the user can create
a 3D shape query from scratch. In our initial approach, we used an existing simple
3D modeling tool called “Teddy” [46].

However, we found that Teddy is very limited in the kinds of shapes that can be
created with it: coarse, blobby shapes of genus 0. An evaluation of 1,000 3D sketches
submitted during a period of six months showed that over 80% of all queries were
exactly that: coarse blobs, not resembling any useful object. As a consequence, the
user interest in the search results was very low. The percentage of 3D sketch queries
resulting in at least one model download is about 5 times smaller than for the most
popular query interfaces.

Designing a simple 3D modeling tool with a minimal set of intuitive operations
enabling the creation of interesting models is a difficult problem. Previous work in
this area mostly targets graphics professionals, or at least people used to working
with 3D graphics. Designing effective 3D modeling tools for the average user is an
important area of future work.

We think that even if such tools were available, there still are many users who do
not have sufficient 3D skills to be able to use them effectively. Therefore we should
also put our efforts into finding a simpler shape query interface that is still effective.
One approach is to drop one dimension and create a 2D query interface. Interfaces
of this type are the subject of the next two chapters.
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Chapter 5

2D Shape Query Interfaces:
2D Free-form Sketch

5.1 Introduction

This chapter investigates a 2D free-form sketching interface for our search engine.
In the previous chapter, we concluded that it is difficult for the average user to

create a 3D shape query from scratch. Perhaps we can make the query interface
simpler by dropping one dimension and asking the user to provide a 2D shape (e.g. a
2D sketch). From the user’s perspective a 2D interface is simpler because people (1)
have more experience with drawing in 2D, (2) are used to seeing 2D projections of 3D
objects, and (3) are able to recognize 3D objects from a single 2D image. Also, both
the input device (mouse or tablet) and output device (screen) are 2-dimensional. So,
2D input and output are most natural.

For these reasons, we decided to develop a simple 2D shape query interface and
accompanying matching method. Our initial goal was to create an interface that is
easy to use and allows the user to quickly specify an overall shape.

There are many design options for a 2D drawing interface, such as the choice of
which primitives to use (pixels, line segments, disks, ...) and which extra features to
include (cut, copy & paste, alignment tools, ...). Because we want the interface to be
usable for any user who knows how to use a mouse and perhaps has used programs
like Paintbrush or Photoshop before, it should be simple and use only well-known
interaction techniques. We chose a sketching interface similar to the pen-drawing
interface as used in Paintbrush-style programs: pixels can be drawn by dragging the
mouse (see Figure 5.1 for an example single stroke drawn with our interface). The
“Clear” button clears the image, the “Undo” button removes the last stroke or undoes
a “Clear”. The right mouse button clears a small circular area of pixels at the mouse
cursor. The user can submit up to three sketches in three separate drawing areas of a
desired model as seen from different directions. The system then returns 3D models
whose 2D projections match those sketches.
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Figure 5.1: An example single stroke drawn using our 2D sketching interface

This approach brings up several new questions: What kind of sketches will people
create, and which viewpoints do they select? How should we match a user sketch to
a precomputed 2D projection? How can we use sketches from multiple viewpoints?
Unfortunately, the vast literature on how trained artist draw [82], how people use
characteristic views [73], and how computers recognize photographic images [39] is
not directly applicable in our case. Rather, we are interested in how untrained artists
make quick sketches and how a computer can match them to 3D objects.

To investigate what people draw when asked to draw a certain object, we ran a
pilot study with 32 students who were asked to quickly sketch various objects. Based
on the results of this study we decided to store the exterior outlines of 2D projections
of the 3D models (“2D views”) in our database as the images to match user sketches
to.

To match a single user sketch to a single 2D view we use a 2D image matching
method that matches 2D feature vectors, computed in a similar way as the feature
vectors of our 3D shape matching method. The matching method has some tolerance
for small user inaccuracies.

When multiple user sketches have to be matched to multiple stored 2D views of
a 3D model, we compare all permutations of n sketches to all combinations of n out
of m 2D views, with the restriction that no two user sketches can match a single
view. The matching score of multiple user sketches is then the smallest sum of the
individual scores, for all combinations. For each 3D model, we precomputed thirteen
2D views, grouped into three side views (looking from the center of a side of the
bounding cube to its centroid), four corner views (looking from the corner), and six
edge views (looking from the center of an edge).

Using a test database of 1,093 classified models (described in detail in Section
4.5.1), we ran several classification experiments, varying the number of stored views
and the number of query views (the stored outlines were used as queries). From
these experiments we concluded that (1) using more query views makes a query
more effective, (2) using side and corner views for both queries and as the model
representation has the best performance, (3) storing side and corner views while
submitting only side or corner views does not significantly impact performance, and
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(4) this matching method is outperformed by our 3D shape matching method.
To investigate the effectiveness of queries in which text and 2D sketches are com-

bined, we ran a user study with 18 students, who were asked to write down descriptive
keywords and draw up to three 2D sketches for five target objects. From this study,
we found that text keywords are effective for picking out small, well-described classes,
and that sketches can be useful for finding specific objects in a larger class (for ex-
ample, a chair with a straight back from a large number of chairs).

We evaluated the effectiveness of our online 2D sketch interface by classifying 589
sketches submitted over a period of 3.5 months (selected from the total set of 11,000
submitted sketches by restricting it to sketches from hosts that submitted at least
20 sketches). The sketches were classified according to the following criteria: (1)
identifiable or not, (2) interior lines or not, (3) accurate or not. Note that (1) and (3)
are subjective criteria. We found that many sketches were inaccurately drawn, and
as a consequence, there was little user interest in the search results: this interface
has the lowest percentage of model downloads of all available query interfaces of our
search engine.

In the next section, we describe the pilot study in which subjects made sketches
of various objects. Section 5.3 briefly reviews the 2D image matching method we
use, followed by an explanation of how multiple sketches are matched to multiple 2D
views in Section 5.4. Section 5.5 has results of classification experiments, the text &
2D sketch user study, and the evaluation of the sketches submitted online. Section
5.6 presents a summary and conclusion.

5.2 What Do People Draw?

First, we have to decide what kind of images the 2D projections should be (e.g.
filled, having silhouette edges only, etc.). For this, we need more information about
what the user sketches may be like. To investigate what people draw when asked to
draw a certain object in a short time, we ran a pilot study with 32 students from
an introductory computer science class. They were asked to “draw the shape of an
<object>” (using pen and paper), for eight different objects, with a time limit of 2
minutes for each object. Representative results appear in Figure 5.2.

What we found is that people tend to sketch objects with fragmented boundary
contours and few other lines, they are not very geometrically accurate, and they use
a remarkably consistent set of view directions. Based on the results of this study,
we decided to include only the exterior outlines in 2D projections of objects in the
database.

Terminology: 2D View
In the remainder of this chapter we will refer to such an image (i.e. the exterior outline
of a 2D projection of a 3D model in our database) as 2D view, or simply view.
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Figure 5.2: Pen-drawn sketches by people asked to “draw the shape of a” camaro car, cow,
dog, human with outstretched arms, mug, DC10 airplane, and sofa

5.3 Matching a User Sketch to a 2D View

Once the user has sketched an image, it must be matched to 2D views of objects in
the database using a suitable matching method (see Figure 5.3 for an illustration of
this matching problem).

Unfortunately, because the user sketches are free-form, methods that match (pos-
sibly closed) planar curves are not directly applicable. Methods that define a func-
tion on a curve, parameterized by arc length (e.g. the turning function for polygonal
shapes [6], the arch height function [62], Fourier descriptors based on such func-
tions [63], or the Curvature Scale Space image [71]), cannot easily be used because
the user input is usually fragmented into many short strokes rather than one contin-
uous contour.

For these reasons, we chose to use an image matching method that has some tol-
erance for user inaccuracies. It was developed by Michael Kazhdan, and is described
in detail in Funkhouser et al. [36]. We now briefly describe this method. The method
computes a similarity value for a pair of images by comparing 2D shape descriptors
computed for both images. Figure 5.4 demonstrates the steps taken to compute the
descriptor: (1) Compute the Euclidian Distance Transform (EDT) of the boundary
contour. (2) Obtain a collection of circular functions by restricting to different radii.
(3) Expand each circular function as a sum of trigonometric functions. (4) Using
the fact that rotations do not change the amplitude within a frequency, define the
signature of each circular function as a list of the amplitudes of its constituent trigono-
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Figure 5.3: A 2D user-drawn sketch has to be matched to an outline of a 2D projection of
a 3D model

metrics. (5) Finally, combine these different signatures to obtain a 2D descriptor for
the boundary contour. This method is inspired by Zahn and Roskies’ work on Fourier
Descriptors [112], which provides a rotation invariant signature for boundary curves,
obtained by computing the Fourier series and storing only the amplitude of each
frequency component. Two descriptors are compared by computing the Euclidian
distance between them.

Figure 5.4: Computing Kazhdan’s 2D shape descriptor [36]

Several other properties of this method are useful for our application. The de-
scriptors are concise and efficient to compute, invariant to similarity transformations
(with normalization for scale and translation) and reflections, and robust under small
user inaccuracies. The advantage of using the EDT, instead of the binary image itself,
is that increasing user inaccuracy causes a gradual decrease in the similarity score
(i.e. a gradual increase in the distance between two descriptors).
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5.4 Matching Multiple Sketches to

Multiple 2D Views

Because we cannot predict from which viewing direction the user will draw a sketch,
we have to store several views of each 3D model (which views these should be is
investigated in Section 5.5.1). The best matching view of a 3D model is then found
by simply comparing the user sketch to each stored view. Additionally, the user can
make a query more specific by submitting multiple sketches, representing the desired
model as seen from multiple different directions (see Figure 5.5 for an example query
with two sketches). In this case, our matching problem becomes one where multiple
user sketches have to be matched to multiple stored views.

Figure 5.5: An example 2D sketch query containing more than one sketch: a side and front
view of a pickup truck

Given our method to compare two images (i.e. by comparing their shape descrip-
tors), we can use it to match n user sketches to m 2D views. This matching is done
by comparing all permutations of n sketches to all combinations of n out of m views,
with the restriction that no two user sketches can match a single view. The matching
score of multiple user sketches is then the smallest sum of the individual scores, for
all combinations. Figure 5.6 shows an example, matching two user sketches to seven
2D views.

Note that by matching this way we do not enforce consistency of direction: it is not
a requirement that all pairwise angles between query views are identical to all pairwise
angles between corresponding database views (for example, three mutually orthogonal
query side views do not have to match three mutually orthogonal database views).
We chose this approach because in our application we cannot make any assumptions
about the view directions chosen by the user.

However, when matching 3D models with other 3D models using 2D projections,
we can ensure direction consistency. For example, in recent work by Chen et al.,
a 2D view based matching method for matching 3D models is presented [21]. The
method uses a representation called the LightField Descriptor (LFD), a set of 10
projections of a 3D model as seen from half the vertices of a dodecahedron. To
compare two LFDs, a similarity score is computed for each correspondence generated
by 60 symmetries of a dodecahedron (i.e. all symmetries excluding reflections). This
similarity score is the sum of the scores of 10 pairwise image comparisons (using an
image matching method). The similarity score of two LFDs is then the minimum
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score of the 60 correspondences. Each 3D model is represented by 10 LFDs, evenly
distributed across the viewing sphere. Using a test database of 1,833 models classified
into 47 classes and one “miscellaneous” class of 1,284 models, they show that their
method has better classification performance than other current 3D shape matching
methods (including the 3D shape matching method we use [54]).

Figure 5.6: Matching n = 2 user sketches to m = 7 2D views. Both permutations of the
user sketches are compared to all

(
7
2

)
combinations of the 2D views. The two best matches

and the corresponding 3D model are shown

5.5 Results and Discussion

In this section, we describe a series of classification experiments designed to evaluate
our 2D freeform sketching query interface for 3D model retrieval. In addition to
testing whether it is effective, we also would like to investigate how many 2D views
should be used for each 3D model and from which directions they should be taken.
We also describe a user study in which the goal is to evaluate whether 2D sketch
queries can augment the performance of text-based retrieval of 3D models. Finally,
in Section 5.5.3, we evaluate the quality of the 2D sketches submitted by actual users
of our search engine.

5.5.1 Outline View Selection

To investigate how the choice of the number and type of the stored 2D views of a 3D
model affects the matching performance, we ran a series of classification experiments
with different sets of 2D views per model.
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Test Database

The classification experiments were run using several different test databases contain-
ing 2D shape descriptors of multiple 2D projections of 3D models from a 3D model
database. The 3D model database was donated by Viewpoint [107] and contains
1,093 models. It is described in detail in Section 4.5.1. Note that in these exper-
iments, we only use the 84 classes with 1,093 models, and not the “miscellaneous”
class mentioned in Section 4.5.1.

View Sets

For practical reasons we have to pick a limited number of 2D views for each model. In
related work, Cyr and Kimia construct prototypical views of a 3D model from views
clustered by their shape similarity measured by a shock graph matching method [25].
These prototypical views could be used as the set of 2D images to represent a 3D
model, and thus be matched to the user sketches. However, the method produces
many views for each model (on average about 7 for the models in a test database of
18 models), Also, these views are sampled from a circle around the object (not the
full viewing sphere), which is inadequate if the models are not consistently oriented.
Finally, it is not clear if the set of 2D views that is most discriminating according
to their shape similarity metric will contain views that typically are sketched by a
human.

For our application, we take the following approach. Since most 3D models are
oriented such that either the XOZ, YOZ, or XOY plane is the “ground plane” (i.e.
the plane on which the model “rests”), it is reasonable to assume that the front, side,
and top views of a model usually produce these plan views (but not necessarily in
that order). We will call the front, side, and top views the side views, and define them
as the orthographic projection of the model as seen from the center of three of the
six sides of a cube (with no two sides opposite each other), looking in the direction of
its center. To these three views we add four corner views, whose viewing directions
are from four of the cube’s eight corners to its center, and six edge views, looking
from the center of six edges to the cube’s center. This makes the total number of
directions to choose from 3 + 4 + 6 = 13. Recall that our matching method (Section
5.3) is invariant to reflection, which is why we only store views from half the sides,
corners and edges. Figure 5.7 shows two directions of each view type, and Figure 5.8
shows a 3D model and a few example projections.

We constructed seven “view sets”, containing 2D shape descriptors of different
subsets of 13 possible views for each model. Table 5.1 shows for each view set which
views were chosen.
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Database name 3 Side 4 Corner 6 Edge Total
S × 3
C × 4
E × 6
SC × × 7
SE × × 9
CE × × 10
SCE × × × 13

Table 5.1: Seven “view sets” produced from different subsets of the total set of 13 views

Classification Experiments

The goal of these experiments was to investigate how many 2D views should be used
for each 3D model and from which directions they should be taken.

We ran 7 × 7 = 49 tests, trying all combinations of using query views and database
views from the set {S, C, E, SC, SE, CE, SCE}.

In each test we submitted n ∈ {1, 2, 3} queries (we found that for values of n >
3 the classification performance increased only marginally, or in some cases even
decreased. Additionally, it may become too cumbersome for the user to draw four
or more sketches. Thus, we do not consider tests with n ≥ 4 further in this thesis).
If the view set has m views stored for each 3D model (i.e. m shape descriptors for
the outline images from those views), then we can choose from

(
m
n

)
different views.

For each 3D model, we try each of these view combinations and pick the best one.
The best query combination is the one with the smallest sum of dissimilarity scores

2 of the 3 side views

2 of the 4 corner views

2 of the 6 edge views

Figure 5.7: Two examples of each direction type (side, corner, and edge views)
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Figure 5.8: Outlines of 2D projections (2D views) are created for each 3D model

between the query images and the database images, over all permutations of the
database images. In other words, given the available m 2D views of a 3D model, and
the number of query images n, we find the n out of those m images with the smallest
possible sum of dissimilarity scores. It may not be reasonable to expect the user
to consistently pick the most discriminating views for every type of object. We do
think, however, that humans are skilled at picking discriminating views (when asked
for the most discriminating view of a table, for example, few people would pick the
top view), and thus the results are loosely indicative of human performance.

The results of the tests are given as precision/recall graphs, with average precision
values at recall values 0.2, 0.4, 0.6, 0.8 and 1.0 (see Appendix A for an explanation
of the precision/recall performance metric). The average precision values are micro-
averages, i.e. averaged over all models. For all tests, the macro-averages (average over
all classes of averages for each class) were computed as well, and we found that they
showed the same behavior. Note that in the following graphs, the range along the
vertical axis is [0, 0.65].

How Many Query Views
First we examine the effect of the number of query views. Figure 5.9 shows the

average precision/recall when using 1, 2, and 3 query views chosen from the SCE
view set, averaged over using each of the 7 possible view sets as the database to
query into. Note that using more query views improves performance, with the biggest
improvement when going from one to two views. All 49 (query view set, database
view set) combinations showed the same behavior, except for some cases when the
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query view type was not contained in the database view set (for example, for the
combination (S, CE)).

Which Query Views
Next, we look at the effect of the number and type of the query views that are

used. Figure 5.10 shows the average precision/recall when using 3 query views for
each of the 7 query view sets, querying into the corresponding view set (i.e., S into S,
SC into SC, and so on). From these results we see that (1) of the query view sets with
a single type, the corner views are most discriminating, followed by the edge views
and side views, (2) adding more views does not necessarily mean that performance
goes up: for example, the (E, E) combination is better than the (SE, SE) one, and (3)
the (SC, SC) combination has the best performance. Also note that the combination
of the largest set (SCE, SCE) is significantly worse than (SC, SC). We think that in
this case there are too many matching possibilities between three images of the query
view set to three images of the database view set.

Note that in our matching method we do not enforce consistency of direction, e.g.
three mutually orthogonal side views do not have to match three mutually orthogonal
views. We intend to add this condition in a future version of this matching method.

Number of Stored Views
From the previous graph, we could conclude to use side and corner views to

represent each 3D model. However, we still should verify if this view set is not
too large, in other words if performance will suffer if we query using side or corner
views only. Figure 5.11 compares the average precision/recall for three queries from
a few (query set, database set) combination pairs: in this graph, compare (S, S) to
(S, SC), and (C, C) to (C, SC). Both comparisons show that there is no significant
difference when using the larger SC view set. This means we can use this view set
without negatively impacting performance should the user submit, for example, just
side views of an object.

Comparison to 3D Matching
Finally, we compare the 2D view-based matching method to our 3D matching

method described in the previous chapter. Figure 5.12 shows average precision/recall
for a few (query set, database set) combinations and number of queries: a single query
from (S, S), two queries from (C, C), and three queries from (SC, SC), as well as for
our 3D matching method. We see that the 3D matching method is better than our
currently best 2D view set based matching method (on average the precision is 12%
higher).

As was noted in Section 5.4, when using 2D views for matching 3D models, we
should enforce direction consistency to improve matching performance (i.e. all pair-
wise angles between query views should be identical to all pairwise angles between
corresponding database views). Our current 2D view based matching method does
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not do this, because in our application we cannot make any assumptions about the
view directions chosen by the user.

For our online user interface we chose to store the seven side and corner views
(SC). Edge views were not used because they hurt matching performance. Even if in
a future version of our matching method (e.g. one in which direction consistency is
enforced) the edge views are helpful, we still think we should not include them in the
representation of models of our online database: we believe that this type of view is
more difficult to imagine for a human, and therefore unlikely to be submitted as a
query. To illustrate this, Figure 5.13 shows a corner view, side view, and edge view
of four example models (a car, chair, dog, and man). Thus, including edge views will
in this case only increase the number of false positive matches.

5.5.2 Text and Sketch User Study

In a user study, we investigated whether 2D shape queries can augment the perfor-
mance of text-based retrieval of 3D models. Prior studies of Content-Based Retrieval
for images show that shape, color and texture provide little benefit in a search engine
with text matching - text similarity of captions dominates these matching modali-
ties [97]. Our goal is to investigate whether this same behavior occurs when shape is
added to text in a 3D model search engine. Our hypothesis is that 2D sketches are
useful in conjunction with text for finding specific objects. To test this hypothesis,
we ran an experiment where we compared the retrieval performance of text and 2D
sketches provided by untrained users.

The subjects in this experiment were 43 students in an introductory computer
science class (not for computer science majors, a different class from the one used in
Section 5.2). Each subject was given a pen and sheet of paper and told that their
task was to write text and draw sketches that could be used by a search engine to
retrieve “target objects” from a database of household objects. After the process was
demonstrated once by the professor, the subjects performed the test for five target
objects from the Viewpoint database (described in Section 4.5.1). For each test, the
target object was shown rotating around on a projection screen at the front of a
classroom. After fifteen seconds (three rotations) it disappeared, and the students
were asked to write up to five text keywords and to draw three 2D sketches from
front, side, and top views that distinguish it from other household objects. They
were given two minutes for each target object, and no feedback was given after each
object.

Later, we scanned their sketches and logged their keywords so that we could enter
them as input to our search engine (example sketches for a chair and an elf are shown
in Figure 5.14). Table 5.2 lists results achieved with queries using: 1) only their
text keywords, 2) only their 2D sketches, and 3) both text keywords and 2D sketches
combined in a multimodal query. For each query type, the table lists the median
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Figure 5.11: Three queries from S, C into the same database, and into SC
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Figure 5.13: A corner view (top row), side view (middle row), and edge view (bottom row)
of four example models (from left to a right, a car, chair, dog, and man), to illustrate the
point that often an edge view is not the view we expect a user to sketch

ranks of the target object and the percentage of the queries where the target object
appeared among the top 16 matches. The latter statistic reflects how often the target
would appear on the first results page in our search engine.

The results in Table 5.2 suggest that text and shape can be complementary in the
information they provide a search engine. For example, for the chair, text keywords
were not discriminating enough to differentiate it from the hundreds of other chairs
and related furniture in the database, and yet very simple sketches were able to
describe it fairly precisely. On the other hand, simple text keywords picked out the
five cannons and four bunk beds, while the 2D sketches were not as discriminating.
Generally speaking, the text was effective at identifying classes of objects, while the
sketches were helpful at selecting the best matches from within a class. The net result
was that the combination of sketches and text usually produced a better match than
either one alone.

5.5.3 Sketch Quality

To evaluate the quality of the 2D sketches created by web users, we examined a
subset of all 2D sketches submitted in a period of about 3.5 months (November 9,
2002 until February 27, 2003). From the about 11,000 queries involving 2D sketches
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Figure 5.14: Sketches drawn by students to retrieve a specific chair (top three rows) and
an elf (bottom three rows) during an in-class experiment

submitted in that period, we selected only those sketches from users (strictly speaking,
from hosts with distinct IP addresses) who performed at least 20 such queries. This
selection consists of 589 queries from 29 hosts, totalling 1,093 sketches. 46 queries
were combined text+sketch, the remaining 543 were sketch only.

The sketches were classified according to the following criteria: (1) identifiable
or not, (2) interior lines or not, (3) accurate or not. Note that (1) and (3) are
subjective criteria. Figure 5.15 shows example sketches from this set, and how they
were classified.

Of the 589 queries, 65% were for identifiable objects such as cars, trees, and
humans. 49% of the queries had sketches with interior detail, which affects the shape

Median rank of target % of queries with target
Target (out of 1890) in top 16 results
object Text Sketch Both Text Sketch Both
name only only combined only only combined
Chair 216 17 28 0.0% 46.2% 25.6%
Elf 10 12 2 89.7% 53.8% 97.4%

Table 100 571 252 5.1% 5.1% 10.3%
Cannon 7 40 2 82.1% 33.3% 89.7%
Bunkbed 3 64 2 89.7% 20.5% 89.7%

Table 5.2: Comparison of retrieval results with queries comprising only text, only 2D
sketches, and both combined
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(a) (b) (c) (d)

Figure 5.15: Examples of sketches submitted by web users, which were classified as follows:
(a) identifiable, no interior lines, accurate, (b) identifiable, interior lines, not accurate, (c)
identifiable, no interior lines, not accurate, (d) not identifiable, interior lines, not accurate

descriptor considerably. 71% of the queries were sloppily drawn (these were sketches
with random looking lines, large errors in proportions, etc., as determined by us, also
see Figure 5.15 (b) and (d)). The overall conclusion from examining these sketches
is that the query sketches created by web users are mostly inaccurate, badly drawn
(not everyone can draw well using pencil and paper, let alone using a mouse), and
are not the boundary contours which would be best for matching.

The main problem for the matching method is the influence of interior detail,
which greatly changes the EDT of the sketch, and thus the shape descriptor. To
illustrate this effect, Figure 5.16 shows the first four matching results from our web
database using a simple outline sketch of a front view of a car, and the same sketch
with some interior detail added. This suggests that the user interface could be im-
proved by making it easier to draw accurate sketches (for example using a line segment
primitive), and by preventing or removing interior detail, or by augmenting our 2D
image matching method to be less sensitive to the presence of interior detail.

5.6 Summary and Conclusions

In this chapter, we have investigated a simple 2D sketch-based query interface for our
3D model search engine. In our initial approach, we created a simple pen-drawing
interface as used in Paintbrush-style programs. The benefits of this interface are its
ease of use and the possibility to quickly sketch an overall shape.

To get a sense of the kind of sketches people draw in limited time, we conducted a
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Figure 5.16: The first four matching results from our web database using a simple outline
sketch, and the same sketch with some interior detail added

user study in which the subjects were asked to “draw the shape of an <object>”, for
eight different objects, in a short amount of time. Based on the results, we decided to
precompute 2D views with exterior outlines of objects in the database, as seen from
different directions. The user sketched outlines are matched to these 2D views of a
3D model using a fast image matching method developed by Michael Kazhdan [36].
The method compares 2D shape descriptors, which are invariant to similary transfor-
mations (with normalization for scale and translation) and reflections, and robust to
small inaccuracies.

To evaluate the 2D matching method’s performance and to investigate which 2D
views are the most effective for classification, we ran a series of experiments using
side, corner, and edge views of 3D models and their combinations, both as query views
and as the views to compare against (i.e. the views stored with each 3D model). The
classification tests were done using a large test database of 3D models, containing
1,093 manually classified models provided by Viewpoint [107]. Our main conclusions
from these tests are: (1) using more query views improves the results, (2) using
side and corner views for both queries and as the model representation has the best
performance, (3) storing side and corner views while submitting only side or corner
views does not significantly impact performance, and (4) this matching method is
outperformed by our 3D shape matching method.

In another user study, we investigated whether 2D shape queries can help text-
based queries for retrieval of 3D models. This time, subjects wrote descriptive text
and drew several sketches of five target objects. We then submitted the text and
sketch queries separately, and combined. We found that text keywords were effective
at identifying classes of objects, and that sketches were helpful at selecting specific
object in a class (for example, a chair with a straight back).
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In future work, we plan to further investigate the question of which limited set
of 2D views is best to represent a 3D object for matching purposes. Other tests will
investigate the type of 2D image to use (e.g. outlines, filled images, dilated images)
and the effect of enforcing consistency of projection directions when matching. We
also intend to experiment with different ways to guide the user while drawing, for
example by letting the user oversketch an image, modify an actual image outline, or
by using other primitives (e.g. line segments).

Unfortunately, the usage results of our online 2D sketch interface show that most of
the submitted 2D sketches are inaccurate and contain interior detail, greatly affecting
the quality of the matching results. To improve this, an approach could be to provide
more guidance to the user in the query interface, for example by letting the user draw
(and manipulate) parts instead of freeform lines. Such a “structural” (parts-based)
interface is the subject of the next chapter.
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Chapter 6

2D Shape Query Interfaces:
2D Structure

6.1 Introduction

This chapter investigates a 2D structural query interface for our search engine.
An important drawback of using an image matching method to match user sketches

to database images is that both images have to be similar in a pixel-by-pixel com-
parison. Both may be images of an object in the same class of objects, and have a
similar structure (for example, both represent a table as seen from the side). But
if they look slightly different (for example, the legs are in a different position), an
image matching method will consider them not very similar at all. There are many
types of objects that belong to the same class and have the same overall structure
(e.g. humans, tables, motorcycles, helicopters, ...), with some variation in size, shape,
position, and orientation of their parts (e.g. the orientation of a human’s arms, or
the height of a table). Our goal is to develop a query interface and matching method
that can work for these types of object classes.

Describing objects as made up out of parts is attractive when considering how
humans perceive objects. Evidence has been presented in the perception literature
that humans think of shape as composed of a set of simpler, basic shapes. Biederman
showed in his seminal “Recognition by Components” experiments that humans tend
to partition shape into convex parts, whose boundaries are recognized near regions of
deep concavity [11]. Because of this assumed correspondence to the human notion of
shape organization, parts-based representations are popular in computer vision appli-
cations (for example, hierarchically organized cylinders [64], or superquadrics [76]).

To capture this notion in a shape query interface, we developed a parts-based
query interface and accompanying matching method, in which the user provides a 2D
structure. An example of a query for an animal created using our interface is shown in
Figure 6.1. Parts can be drawn by dragging the mouse (similar to drawing ellipses or
rectangles in Powerpoint, for example). Once created, parts may be deleted, moved,
scaled, or rotated, using the mouse and/or keys.
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Figure 6.1: An example parts-based query for an animal using ellipses as primitive parts.
Note that the head is being moved

The new challenge then is to match the user-provided parts to 2D projections of a
3D model. One approach could be to derive structure from the submitted parts and
from the 2D projections, and match structure to structure. However, there does not
exist a robust image segmentation method for arbitrary 2D projections of 3D models.
Therefore, we decided to match the user input directly to the 2D projections.

For this approach, we need to address several issues: (1) which part primitive to
use, (2) how to parameterize the user input, and (3) how to match a set of parts to
a 2D image. For the part primitive we chose the ellipse, because it provides a good
trade-off between expressiveness and the number of parameters. A tree is derived
from a set of user-provided parts by letting the user select the root, and assigning
parent-child relationships using heuristic rules based on part size and proximity. To
match a set of ellipses to a 2D image we minimize an objective function consisting
of four terms: it rewards (1) parts overlapping the image, and (2) parts aligned with
the image’s Medial Axis, and penalizes (3) parts overlapping each other, and (4) part
deformation.

The various weights and parameters of the methods were optimized for classifica-
tion using a training set of 75 models, classified into 15 classes of 5 models. We then
compared the classification performance of this method to the 2D image matching
method using a test set of the same size. We found that on average our structural
matching method showed better classification performance, especially for classes in
which the models are structurally very similar, but can have many different designs
(for example, tables). Unfortunately the method is too slow (taking about 1 second
for a single match on average) for interactive applications.

The remainder of this chapter is organized as follows. After a discussion of related
work on computing and matching 2D structure, we describe our approach in Section
6.3. Results on the matching performance of our method are in Section 6.4, followed
by a summary and conclusions.
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6.2 Related Work

A wide variety of methods exist that compute 2D structure from 2D shape. For our
matching problem, 2D structures could be precomputed for the 2D views of the 3D
database models, and then matched to the user-provided structure using a structural
matching method, such as attributed graph matching.

Shape Decomposition

Following Biederman’s result that humans tend to partition shape into convex parts,
whose boundaries are near regions of deep concavity, we can try to automatically
decompose a shape into convex parts [11]. Marr and Nishihara show an example
in which concavities are identified in a shape contour, which are then connected
using heuristics [64]. However, it is unclear which heuristics have been used, and
whether they would work in general. Optimal convex decomposition algorithms do
not necessarily decompose a shape into parts the way a human would. Figure 6.2
shows two examples of simple polygonal shapes and a decomposition produced by the
method of Keil and Snoeyink [55].

Figure 6.2: Optimal convex decomposition algorithms do not necessarily produce a good
segmentation

Medial Axis Transform

The Medial Axis Transform, originally proposed by Blum in 1967 [14], has attracted
a lot of attention because of its potential as a structural shape descriptor. Blum
illustrated the transformation with a “grassfire” analogy: a fire is started at the
shape contour, which propagates with constant velocity. The locus of points where the
firefront meets (where the fire is quenched) is called the Medial Axis. It follows that
these points are also the centers of the contour’s maximal inscribed circles. Figure 6.3
shows an example 2D boundary, its Medial Axis, and two maximal inscribed circles.

There exist many methods to compute the Medial Axis (or approximations thereof)

57



Figure 6.3: An example 2D contour, its Medial Axis (the dashed line), and two maximal
inscribed circles

for 2D shapes (e.g. using topological thinning [58], active contours [61], Voronoi dia-
grams [8], subpixel tracing of flux field discontinuities [30], etc.).

However, the Medial Axis suffers from the problem that small changes of the
boundary can cause large changes in the axis, both by creating extra branches as well
as changing graph topology. Several methods attempt to alleviate this problem by
incorporating a user-set detail threshold, which determines for example the size of
the features (branches) that are included. Other methods prune the MA in a post-
processing step (also using a user-set threshold that determines which branches are
relevant).

As a result, corresponding matching methods have to compensate for these spu-
rious branches and differing topologies (e.g. [8, 75, 91, 93]). For all these methods,
however, it is not clear how well they will perform in the presence of noise: examples
usually are given only for fairly simple shapes (much simpler than typical 2D views
of a 3D model) with little boundary noise.

Deformable Templates

Methods based on deformable templates are either not parts-based [49], or target
specific types of images such as ones containing cars [51] or faces [111]. In order
to match arbitrary images, many different templates have to be pre-designed, each
representing a certain class of objects. This is the approach followed by Anderson
et al. [4] for recognizing scanned 3D clay models. They constructed representative
3D templates for 13 classes of objects, and added 9 variations of each representative
template to account for part size variations within a single class. Using a similar
approach for our matching problem would require a large amount of work, since we
would have to create templates for every object class in our database. This method
could still be useful if representative templates for object classes could be computed
automatically, given a suitable training set (similar to the Active Shape Models by
Cootes et al. [22]). This is a subject of future research.
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We may conclude that currently there exists no method to decompose an arbitrary
image of our type (i.e. a 2D projection of a 3D model) into a canonical set of simple
parts. Even if we had such a method, we still cannot be sure that the user will provide
the same set of parts for a certain object. Pentland, in his paper on representing
3D shapes using superquadrics, notes that domain experts may form different shape
descriptions than those created by naive users [76]. In general, it is not clear what the
canonical decomposition is of many shapes. For example, in Figure 6.4 two possible
decompositions of a car are shown. This is an important challenge for methods
which derive and match structure. It means that multiple nodes in one graph may
correspond to multiple nodes in the other graph, greatly increasing the size of the
search space.

Figure 6.4: Two different part decompositions of a car

6.3 Our Approach:

Matching Directly to the 2D Views

Because of this lack of a suitable decomposition method, we decided to avoid the shape
decomposition problem altogether, and attempt to match the user input directly to
the 2D views.

This amounts to matching a set of primitive parts to a 2D image, while allowing
some structural deformations (see Figure 6.5 for an example). A similarity score is
computed for the pair (user-drawn parts, image) by fitting the parts to the image.
This is done by minimizing an objective function which computes an error of fit.
This function rewards parts overlapping the image and parts aligning with the lo-
cal maxima of the image’s Euclidian distance transform (i.e. the Medial Axis), and
penalizes deformation of parts and parts overlapping other parts. It is minimized
using a common non-linear optimization method for complex functions for which a
derivative cannot easily be computed analytically.

The advantages of this approach are threefold: (1) it is not necessary to precom-
pute a robust 2D structural representation of the database images, (2) the user does
not have to provide input consistent with such a representation, and (3) by allowing
for variation in the relative position, sizes, etc., of parts when matching, it will be
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Figure 6.5: A 2D user-drawn set of primitive parts has to be matched to a 2D projection
of a 3D model

possible to do matching of structure. A possible disadvantage is that this approach
for matching structure may be slower than matching (simple) graphs.

For this method, we need to address the following issues: (1) which type of parts
to use, (2) how to derive structure from a set of user-drawn parts, and (3) how to
match this set of parts to a 3D model. These issues are the topic of the following
sections.

6.3.1 Choice of Part Primitive

First, we have to decide what kind of primitive to use as the basic part of the interface.
The interface should be easy to use, so the chosen primitive should be easy to create
and manipulate by the user. For this reason, a simple primitive with few parameters
(e.g. a circle) is preferred. On the other hand, the primitive should be sufficiently
expressive to represent a part of an image of an object. This requirement favors a
primitive with more parameters (e.g. a superquadric). As a result, there is a trade-
off between ease of use and the “expressiveness” of a primitive. Additionally, the
complexity of the primitive determines the number of parameters that may be varied
in the matching step, and thus the complexity of the search space and the time until
convergence. Since we have limited time to do the matching, having fewer parameters
is better.

We now discuss several 2D parameterized primitives, in order of increasing com-
plexity (i.e. the number of parameters), and their appropriateness for our application.
They are shown in Figure 6.6: points, circles, squares, line segments, ellipses, rectan-
gles, superquadrics [99], geons [29, 109], and generalized “ribbons” (the 2D equivalent
of generalized cylinders [12]).

We dismissed the point primitive because it does not specify any extent. Line
segments may be appropriate to represent articulated objects, but less so for other
types of objects (for example, a mug, desk, or car). For non-articulated objects, and
to be able to specify local width, we need to use a primitive that has area. Circles
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Figure 6.6: Possible choices for a part: (a) point (b) circle (c) square (d) line segment (e)
ellipse (f) rectangle (g) superquadric (h) geon (i) generalized “ribbon”

or squares are the simplest choices, but unfortunately they cannot represent oblong
parts. This leads us to rectangles, ellipses and superquadrics, which have a length and
a width parameter. Additionally, a superquadric has a parameter that determines the
“roundness” of its corners.

Increasing the number of parameters per primitive results in greater flexibility.
The 2D equivalent of the 3D generalized cylinder, a generalized “ribbon”, is parame-
terized by an axis curve, and a width function along the axis. In practice, the curve
is approximated by a piecewise linear curve, so it requires 3n + 4 parameters ((x, y)
and local width for each sample point, assuming the part is locally symmetric about
the axis, and 4 for the starting position, orientation and scale), giving a minimum of
10 parameters per part.

By limiting the number of choices for the axis shape and size (i.e. local width)
function, we can create a set of 2D geons (similar to 3D geons: for example, the size
function can be constant, monotonically increasing, or monotonically increasing then
decreasing [11]). This is a small subset of all possible 2D generalized ribbons. Even
though both geons and generalized ribbons are much more expressive than the other
primitives, we think these types of parts are too complicated for the average user.
Also, the large number of parameters per part makes the matching step much more
expensive.

Given this trade-off between (number of parameters, ease of use) and expressive-
ness, we chose the ellipse as the part primitive in the initial design of our structural
interface. Sets of ellipses are easy to draw interactively, and they are expressive
enough to describe many naturally occuring objects. The rectangle is almost equiv-
alent, but is more awkward to manipulate when not oriented at a right angle. The
superquadric adds one more parameter, which makes the interface more complicated
(now the user has to specify the “roundness” of each part), and the optimization step
more expensive.

6.3.2 Ellipse Parameterization

In this section we describe how we parameterize a set of ellipses as a single object. If
we parameterize each ellipse independently (i.e. each ellipse has its own position, size,
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Figure 6.7: The relative angle α between two ellipses, and their shortest distance r

and orientation), it becomes difficult to express the kind of variation that we want to
allow. For example, Figure 6.7 shows two ellipses representing a torso and an arm. If
the parameters α, their relative angle, and r, the shortest distance between them, are
part of the optimization, then we do not have to recompute them (i.e. derive them
from position, size, and orientation of individual ellipses) at every optimization step.

Instead, we first apply a tree structure to a set of ellipses. The “root ellipse” is
picked by the user, and every other ellipse is reparameterized in terms of its parent. In
this way, changes to a parent ellipse propagate to all its children. For example, if the
orientation of an “arm” part is changed, the “hand” part stays attached, which would
not happen if all ellipses were parameterized independently. It is now also easier to
specify allowed deformations in terms of the parameters of the representation.

To create this tree, first a complete graph is constructed, with each ellipse as a
node. The weights of the edges of this graph are set to wd2 + 1/(

√
a1 + a2), where

d is the shortest distance between the two ellipses, and a1 and a2 are their areas.
The distance term favors edges between nearby parts, and the area term between
large parts, with w a weight controlling the terms’ relative importance (currently
set to 1/8000, through experimentation with a few common sets of parts). Next,
the minimum spanning tree (MST) of this graph is computed. Figure 6.8 shows the
edges that are created with these settings for a set of ellipses representing a human,
for different positions of the leg. Note that even though the leg marked “5” is very
close to the other leg in Figure 6.8 (a), it is still connected to the torso. Moving it
further away from the torso creates a link between both legs. In Figure 6.8 (c) it is
far enough away from the other leg to be again connected to the torso.

For the root ellipse the parameters (position (x, y), size (w, h) and orientation α)
are kept. All other ellipses are parameterized in terms of their parent (see Figure
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Figure 6.8: Links created for three different “leg” positions

6.9). The “child ellipse” parameters are:

tc

tp

α

∆α

r

child

parent

Figure 6.9: Reparameterizing a child ellipse in terms of its parent

• tp, the attachment point on the parent. tp is the t value in the parameteric
equations for the ellipse, x = a cos t, y = b cos t (with a and b the major and
minor axis length)

• tc, the attachment point on the child

• r, the distance between both attachment points
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• ∆α, the relative angle of the child

• relative scale: the child’s area divided by the parent’s area

• ρ, the aspect ratio (height divided by width)

Note that now there is one more parameter for each ellipse because the child’s position
is represented by three instead of two parameters. This allows us to specify the penalty
for changes in the attachment point on the parent, attachment point on the child,
and the distance between those points.

6.3.3 Matching Method

The next issue is matching user provided structure to 2D projections of 3D models
(the 2D views). The user-drawn parts are matched to a 2D view by minimizing
an objective function which computes an error of fit. The design of this objective
function, and the choice of minimization method are the subject of the following two
sections.

Objective Function

Next, we need an expression for how well a set of ellipses fits an image and how much it
has been deformed to do so. Intuitively, if a set of ellipses matches an image perfectly,
then (1) the image is completely covered, (2) the “parts” of the image each correspond
to an ellipse, (3) the ellipses do not overlap each other, and (4) the ellipses have not
been deformed, at least not in a way that is not allowed. The objective function
has four terms, each term corresponding to one of these criteria. As a formula, with
weights added for each term:

E = wi · image overlap + wa · alignment + wd · deformation + wp · parts overlap

All terms are scaled such that they fall between 0 and 1, with 0 being the best
matching score, and 1 the worst.

Image Overlap
This term gives the relative coverage of an image by a set of ellipses, and is

computed as 1−nc/ni, with nc the number of covered pixels, and ni the total number
of pixels in the image. To reduce the amount of compute time required, we store k
random samples of each image, and compute the coverage value as 1 − sc/k, with sc

the number of covered sample pixels.

Parts Alignment
The second term is the only term that rewards “structural correspondence” be-

tween the set of ellipses and the image. This is done by comparing a sampling of
the longest axis and boundaries of the ellipses to the Euclidian Distance Transform
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(EDT) of the image. The computed value measures how well the longest axis of each
ellipse aligns with the local maxima of the EDT, i.e. with the Medial Axis. As was
described in Section 6.2, the Medial Axis (MA) is a popular structural shape descrip-
tor. The major drawbacks of this representation are its sensitivity to boundary noise,
and the instability of its graph topology.

We circumvent these problems by computing a continuous value for the alignment
of an ellipse with the local maxima of the EDT. This alignment value is computed
as follows. In preprocessing, the EDT of each image is computed, using the method
developed by Saito and Toriwaki [87]. See Figure 6.10 for an example image and its
EDT. For an ellipse to align with the local maxima of the EDT, along its major axis

Figure 6.10: An example image and its Euclidian Distance Transform (EDT) (lighter pixels
correspond to larger distances from the boundary)

the local width should be identical to the EDT value, and along its boundaries the
EDT should be zero. The alignment value is computed by sampling both the major
axis and these “major boundaries”. Figure 6.11 (a) shows a closeup of the EDT of
the bird in the previous figure, with an ellipse and some samples of the major axis.
At each sample point the absolute difference between the ellipse’s local width d and
the EDT value at that point is computed. This difference is normalized by dividing
it by the minor axis length. Figure 6.11 (b) shows the same image with a number of
samples on the major boundaries. For these sample points the average EDT value
at each point, normalized by the minor axis length, is computed. The alignment
value for a single ellipse is a weighted sum of the axis and boundary averages. The
alignment value for a set of ellipses is simply the average alignment value over the
entire set.

This alignment value is only slightly affected by boundary noise, and the location
of MA branch points. Figure 6.12 (b) shows an example of an ellipse aligned with the
EDT of the ellipse image in Figure 6.12 (a). Figures 6.12 (c) and (d) show the effect
of adding (c) a protrusion, and (d) significant boundary noise. The alignment values
for the ellipse are 0.04, 0.06, and 0.07 respectively (i.e. all close to zero). In contrast,
the Medial Axis varies greatly for each image. Figure 6.13 shows the pruned “shock
graph” (this is a Medial Axis based representation [92]) for the same three images
(images in Figure 6.13 courtesy of F. Leymarie). The full shock graphs were pruned
according to the method described by Tek and Kimia [103].

65



d

(a) (b)

Figure 6.11: Computing the alignment of an ellipse with the EDT

(a) (b) (c) (d)

Figure 6.12: (a) an image of an filled ellipse, (b) an ellipse aligned with the EDT of the
image (alignment value 0.04), (c) the same ellipse image with a protrusion added (alignment
value of the same ellipse 0.06), and (d) with more boundary noise added (0.07)

(a) (b) (c)

Figure 6.13: The simplified shock graphs for the images in Figure 6.12 (a), (c), and (d)
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Parts Deformation
Besides terms that reward correspondence between the ellipses and the image,

terms that penalize unwanted behavior are also required. Therefore we add a de-
formation term that penalizes changes in parameters such as aspect ratio, relative
orientation, and attachment point. By weighing the deformation term and its in-
dividual parameters appropriately, we can control to what extent part deformation
affects shape similarity. For example, if the user draws a set of ellipses representing
an airplane with the wings at right angles, and this set should match an image of
an airplane with the wings at 45 degrees, then the penalty for changing the relative
angle of parts with respect to their parents should be relatively small.

Next we describe in detail how the deformation term is computed. In the following
formulas in this section, the subscript 1 denotes values of the original (starting) set
of ellipses, and the subscript 2 values of the deformed set.

The deformation error for the root ellipse is different from the error for the other
ellipses. Because its error should be translation, scale, and orientation independent,
it depends only on a change in aspect ratio, and equals w(̇1 − ρ1/ρ2)

2, with w a
weight factor, and assuming ρ1 < ρ2 and both aspect ratios < 1. This error function
measures relative change, is symmetric across the line ρ1 = ρ2, and is C1 continuous.

The error for the remaining ellipses, i.e. the ones that have a parent and are
parameterized in terms of their parent, depends on the change in (1) the attachment
point on the parent, (2) relative orientation, (3) relative scale, (4) aspect ratio, and
(5) distance to parent. In the equations below, � is an operator which returns the
smallest difference of two values in a circular domain (which is [0, 2π] both for t and
α, the resulting range is [0, π]). For example, if t1 = π/6, and t2 = 11π/6, then
t1 � t2 = π/3, see Figure 6.14.

t1
t2

t1 t2 = π/3= 11π/6
= π/6

Figure 6.14: An example of a result of the � operator
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1. errt = (t1 � t2)
2

2. errα = (α1 � α2)
2

3. errs = (1 − s1/s2)
2, assuming s1 < s2

4. erra = (1 − ρ1/ρ2)
2, assuming ρ1 < ρ2

5. errr = (|r1 − r2|/rimg)
2, with rimg the average radius of the database image

The total error is a weighted sum of the individual terms:

(wserrs + wαerrα + wterrt + waerra + wrerrr)/5

Each of the weights has to be set to an appropriate value, such that its range cor-
responds to our intuitive notion of which deformations are acceptable and which are
not. To determine these values, we explored the configurations that were allowed for
error values less than 1.0, for various sets of ellipses and combinations of the individ-
ual terms. Figure 6.15 shows an example of a set of ellipses representing a human
figure, and some pose variations with their corresponding deformation error values.

From these tests we determined the weight settings. Currently we use the following
settings: wt = 2, wα = 1/(π/4), ws = 4, wa = 8, wr = 5. The deformation error for a
set of ellipses is simply the average error over all ellipses.

(a) 0.00 (b) 0.026 (c) 0.070

(d) 0.035 (e) 0.14 (f) 0.39

Figure 6.15: (a) A set of ellipses representing a human figure. (b)-(f) Pose variations and
their corresponding deformation error values
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Parts Overlap
In certain cases, the deformation term does not penalize undesirable configura-

tions. For example, two ellipses may initially be very near each other and end up
covering the same part in the image, at a low deformation cost. For this reason, we
added a fourth term that penalizes parts overlapping each other.

Instead of computing the exact intersection between each pair of ellipses, we use
an appromixation. The boundary of each ellipse is sampled at k points, and each
point is checked to see if it is inside any of the other ellipses. The overlap value
then is ni/k, with ni the number of boundary points that falls inside another ellipse.
The overlap values are averaged over all 2 · (e

2

)
combinations (with e the number of

ellipses).
Because ellipses may overlap in the initial query set, we compute all pairwise

overlaps before the optimization starts, and use these as the “zero point” for each
(i.e. these values are subtracted from the computed overlaps during the optimization).

Optimization Method

Because our matching method is a component of an interactive application (a shape
query interface), the optimization stage in which a set of ellipses is matched to an
image has only limited time to run. Therefore, the optimization method we pick
should quickly converge to a local minimum (given the limited time we cannot hope
to find a global minimum). We can only compute approximations of the derivatives
of the first two terms of our objective function, because they depend on the image
we are matching to. These are expensive to compute, and not likely to be of use to
methods that use the derivative to speed up convergence, because of the irregular
nature of the image.

We tested three different optimization methods that do not need derivatives, using
the implementations presented in Press et al. [78]. In early experiments we used sim-
ulated annealing to find a global minimum, but this method turned out to be too slow
for real-time applications (4 minutes for a single match on a 1.5 GHz Pentium III).
Another tested method was Powell’s direction set method, which runs much faster.
However, because we cannot run the method long enough to improve the direction
set, the obtained result becomes dependent on the order in which the parameters
are optimized. A third method, the Multidimensional downhill simplex method, was
able to produce reasonable minima in limited time. It optimizes by changing the
position of the vertices of a high-dimensional simplex, usually picking the vertex with
the highest objective function value at each step. Possible vertex position changes
include reflection, reflection and expansion, and contraction. The optimization ends
when the simplex is small enough.

Initial Guess
If a set of ellipses has roughly the same size, position and orientation as the image

it is being fit to, then the optimization step will be more likely to find a good local
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(or global) minimum. Therefore, before we start the optimization, we try to find a
good initial guess. We normalize for translation (position) by aligning the center of
mass of the ellipses and the image, and normalize for scale using the average radius
(the average distance of each pixel to the center of mass) of both. Both these steps
are less sensitive to outliers than when normalizing based on a bounding rectangle.

For finding a good initial orientation, we tried two methods. Both methods try a
limited number of orientations and pick the one with the smallest objective function
value. The first method tries all eight possible alignments of the two pairs of principal
component vectors of the set of ellipses and the image. The second method simply
tries a relatively large number of orientations (the set of ellipses rotated in steps
of π/25 radians, also reflected through a line through the origin, for a total of 100
orientations).

We evaluated both methods by looking at the alignments it produced for a test
database of 75 sets of ellipses and 75 corresponding images. The images were classified
into 15 classes of 5 images each. Each set of ellipses should align correctly with the
images in its class, yielding 15 × 5 × 5 = 375 correct alignments. We found that the
principal component based aligment produced a correct alignment in 77% of all cases,
and the method that tries 100 orientations in 85% of all cases. The images in six of
the 15 classes were relatively easy to align, because of their strong similarity (these
classes were fish, floorlamp, gun, fighterjet, helicopter and sword). Leaving out these
“easy classes,” the correctness percentages went down to 65% and 78% respectively.

Based on these results, in all subsequent tests we used the second alignment
method. The actual number of initial orientations to try was determined by evaluating
the classification performance depending on this number.

6.4 Results and Discussion

In this section we present results of experiments designed to evaluate the classification
performance of our structural matching method. Two test databases were created.
The first (the “training set”) was used to optimize the weight settings of the objective
function, the second (the “test set”) to evaluate classification performance.

6.4.1 Test Databases

The matching method was evaluated using two databases of 75 models each, both
classified into 15 classes of 5 models. The models were selected from our model
databases of about 31,000 web models and 5,000 commercial models. Types of models
that were expected to benefit from a structural matching method were preferred, since
we are evaluating a method whose goal it is to match structure. So, for example, there
are classes “human” and “helicopter,” and no classes “couch” or “telephone”. Figure
6.16 shows all 75 models of the training set, Figure 6.17 shows all 75 models of the
test set.
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1. bird

2. car

3. chair

4. dinosaur

5. fish

6. gun

7. helicopter

8. human

9. jet

10. lamp

11. plane

12. quadruped

13. sword

14. table

15. tree

Figure 6.16: Screenshots of all 75 models in the training set
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1. candle

2. car

3. chair

4. dinosaur

5. fighterjet

6. fish

7. gun

8. helicopter

9. human

10. motorbike

11. plane

12. quadruped

13. sword

14. table

15. tree

Figure 6.17: Screenshots of all 75 models in the test set
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One of the databases was used as a training set, to optimize parameter settings.
The parameters that were optimized are the four weights of the individual terms of
the objective function, as well as several weights within each term (for example, the
number of random image samples to use for the image overlap term).

In our matching method, we are matching sets of ellipses (the user input) to 2D
views (2D images, projections of the 3D models). To evaluate the method, we have to
create both sample user input, as well as sets of 2D views of the 3D models. The 2D
views we used were the three orthographic “plan” views (side, front and top views,
which were labeled “S” in Section 5.5.1). One of the 75 models was not aligned with
any of the XOY, XOZ, or YOZ planes, and had to be manually aligned. To ensure that
thin features (such as the blades of a helicopter) would still appear in the relatively
small (256×192) images, we initially created all views at a 512×384 resolution, dilated
those images three times, and then scaled them down to 256×192. We created sample
user input for each model by oversketching one of the three views with a set of ellipses
(we found that matching a single set of ellipses to an image already took a relatively
long time, so using two or three sets would increase the turnaround time by a factor
of two or three). Out of the three views, one was selected as the most “characteristic”
view and oversketched using a simple ellipse drawing program, using up to 7 ellipses
(to limit the number of parameters of the optimization). This set of ellipses was used
as the user input targeting this particular model. Figure 6.18 shows some example
3D models, their three views, and the view that was chosen to oversketch. Figure
6.19 shows the ellipses drawn for the selected views.

Figure 6.18: Example models from two small test databases, their three plan views, and
the selected “characteristic” view
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Figure 6.19: Example ellipses drawn for the selected views in Figure 6.18

6.4.2 Parameter Optimization

We used the training set to optimize the weights wi, wa, wd, and wp of the four terms
of our objective function:

E = wi · image overlap + wa · alignment + wd · deformation + wp · parts overlap

To evaluate a certain weights setting, we measured the average precision (i.e. the
precision for recall values 0.2, 0.4, 0.6, 0.8, 1.0 divided by 5) when submitting each of
the 75 sets of ellipses as a query, and computing similarity values based on matching
them to the 75 × 3 = 225 database images (see Appendix A for an explanation of
the precision/recall performance metric).

Initially we set all weights to 1.0. Then each weight was varied individually. Figure
6.20 shows how the average precision changes when the weight of each of the objective
function’s terms is varied individually. For each weight, the average precision measure
reaches a maximum for the value 1.0. As a result, we used the original weight setting
to evaluate classification performance on our test database.

Decreasing or increasing a term weight has a different effect on the results de-
pending on the term. We will now look at some specific examples to illustrate these
effects. Each example shows what happens when a weight is set too low, “just right”,
or too high (there are of course specific cases where a low or high setting of a weight
resulted in better matches, but on average the middle setting worked best).

Figure 6.21 shows the first five matches for a set of ellipses representing a bird, for
three settings of the image overlap term weight (0.25, 1.0, and 3.0). A result with
a yellow background indicates a match with the query itself, and results with a green
background matches with objects from the same category. The first setting (0.25,
Figure 6.21 (a)) is not high enough, resulting in matches with images that have good
EDT alignment, but too many uncovered pixels. Setting the weight to 3.0 (Figure
6.21 (c)) yields matches with bad EDT alignment in favor of covered pixels. The best
setting (Figure 6.21 (b)) results in matches with three birds in the top five results.

Figure 6.22 shows a similar sequence for a set of ellipses representing a floorlamp,
this time setting the EDT alignment weight to the same three values (0.25, 1.0,
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Figure 6.20: Average precision for different values of the weight of the (a) image overlap
term, and (b) EDT alignment term, (c) ellipse overlap term, (d) deformation term. Note
that in each graph the y-axis starts at 0.5 and ends at 0.65

and 3.0). In Figure 6.22 (a) the table and passenger plane are top matches because
the ellipses cover the image well, without a lot of deformation or mutual overlap, and
the misalignment with the EDT is underweighed. Conversely, in Figure 6.22 (c) the
ellipses are deformed too much to achieve a good EDT alignment.

The weight of the part overlap term had very little effect on classification per-
formance (as could already be seen in Figure 6.20 (c) from the small variations in
average precision depending on this weight). Figure 6.23 does show an instance of a
query for which 1.0 was the optimal weight setting, but there were very few cases like
this.

Finally, Figure 6.24 shows the effect of setting the deformation weight to 0.25,
1.0, and 5.0 respectively, for a set of ellipses representing a table (5.0 because 3.0
showed no decrease in performance). Note that in this case, because of the large
variability in the class of tables, and their structural similarity, the lowest weight
setting actually produces the best results.
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(a)

(b)

(c)

Figure 6.21: The top five results for a set of ellipses representing a bird, with the image
overlap weight set to (a) 0.25, (b) 1.0, (c) 3.0. Below each image an id number, similarity
score, and class name are shown. The id number of the query model was 16863

(a)

(b)

(c)

Figure 6.22: The top five results for a set of ellipses representing a floorlamp, with the
EDT alignment weight set to (a) 0.25, (b) 1.0, (c) 3.0. Below each image an id number,
similarity score, and class name are shown. The id number of the query model was 23146
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(a)

(b)

(c)

Figure 6.23: The top five results for a set of ellipses representing a dinosaur, with the part
overlap weight set to (a) 0.25, (b) 1.0, (c) 2.5. Below each image an id number, similarity
score, and class name are shown. The id number of the query model was 17095

(a)

(b)

(c)

Figure 6.24: The top five results for a set of ellipses representing a table, with the defor-
mation weight set to (a) 0.25, (b) 1.0, (c) 5.0. Below each image an id number, similarity
score, and class name are shown. The id number of the query model was 7716

77



Other Parameters

Next, we fixed the weight settings to 1.0 and measured average precision when varying
several “secondary” parameters of the optimization.

The first is the number of initial orientations to try to find a good initial alignment
guess. Figure 6.25 (a) shows the average precision (of the five average precision values
at recall values 0.2, 0.4, 0.6, 0.8 and 1.0) for different settings of this parameter. Based
on these results, we set this number to 100. Figure 6.25 (b) shows the average precision
for different numbers of random image samples to use for the image overlap term.
The horizontal line shows the average precision achieved when the exact number of
overlapped image pixels is counted for this term. Given these results, we picked
the value 200. Figure 6.25 (c) shows the same results for the number of boundary
samples that are used to compute an approximation of the ellipse overlap term. The
value we used throughout is 32, yielding a performance not significantly lower than
the apparent maximum at 24. Figure 6.25 (d) shows the results when varying the
number of samples used along the ellipse’s major axis when computing the EDT
alignment term. Originally we used 37 samples (from -0.9 to +0.9 along the axis,
with 0.0 the center and -1.0 and 1.0 the extremes, in steps of 0.05), but this graph
shows that 16 would have sufficed.

Finally, using the initial pairwise overlap (i.e. the overlap specified by the user)
between ellipses as the “zero point” (as described in Section 6.3.3) resulted in an
increase of the average precision value by 8%, when compared to penalizing any
overlap.

6.4.3 Comparison to our 2D Sketch Matching Method

To see if our structural matching method can improve classification performance over
a 2D image matching method, we compared it to our 2D sketch matching method (as
described in Section 5.3) using our test database of 75 models. The outlines of the sets
of user drawn ellipses were matched to the outlines of the three images stored for each
database model. Figure 6.26 shows a precision/recall graph for both methods, using
the test database. For comparison, the precision/recall of image-to-image matching
(picking the single best image of the three available), and the curve of a method that
returns random results are included.

The graph shows an improvement in average precision of 18% of the structural
matching method over the image matching method. Interestingly, using the ellipse
outlines as input for our image matching method produces better classification results
than using the more detailed images themselves as queries. This may be explained by
the fact that the sets of ellipses better represent the “average shape” of the objects
in a class.

Figure 6.28 shows a similarity matrix for both methods. Darker squares indicate
better similarity scores (lower dissimilarity scores). The brightness value of each
pixel in each matrix has been normalized by the average similarity score of the whole
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Figure 6.25: Average precision for different values of (a) the number of orientations to
try for the initial alignment, (b) the number of random image samples to use for the im-
age overlap term (the horizontal line shows the optimal value, achieved when computing
exact image overlap in pixels), (c) the number of boundary samples used to compute the
approximate ellipse overlap term, (d) the number of samples along the ellipse’s major axis
to compute the EDT alignment term

matrix. From these similarity matrices we see that the matrix of the image matching
method has higher contrast, reflecting the property of the method that pairs of images
usually are rated either very similar or very dissimilar.

Examining the matching results in more detail, we can identify the classes for
which the structural matching yields an improvement, and for which it does not.
Figure 6.29 shows the same similarity matrices, but now with only three possible
markers in each matrix cell: n corresponds to the “nearest neighbor” match (i.e. the
image with the lowest dissimilarity score), © to the next four best matches, and • to
the next four. A perfect matching result for a class would result in five n markers
on its diagonal, and the remaining 20 squares having a ©.

In these matrices we observe the following effects: (1) objects of the same class
that are structurally similar but have varying geometric properties are matched bet-
ter using our structural matching method (compare for example the table, chair,
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Figure 6.26: Precision/recall for 2D structural matching, 2D outline image matching (of the
ellipse outlines to the stored 2D view outlines), 2D image-to-image matching, and random
retrieval, for a test database of 15 classes of 5 models each

and helicopter classes), and (2) objects of the same class that look very similar are
matched well using our image matching method (see for example the gun and pas-
senger plane classes). Furthermore, the structural matching method returns some
reasonable matches across classes, for example men to birds, and fighterjets to pas-
senger planes (see Figure 6.27, these are examples from the training set). We conclude
that our structural matching method performs well for the classes of objects for which
it was intended, i.e. classes with structurally similar objects and relatively large geo-
metric variations.

Figure 6.27: Examples of structural matching across classes: (a) a man to a bird, (b) a
fighterjet to a passenger plane, (c) a dinosaur to a quadruped
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Figure 6.28: Similarity matrix of (top) 2D structural matching and (bottom) 2D image
matching. The brightness value of each pixel in each matrix has been normalized by the
average similarity score of the whole matrix
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6.4.4 Timing Results

Currently our structural matching method is not fast enough for interactive applica-
tions. It takes about 1 second on average for a single match between a set of ellipses
and an image (0.34s on average for 3 ellipses, 0.68s for 4, 1.11s for 5, and 1.8s for 6).
The image matching method, on the other hand, takes on average 0.02 seconds per
match (all timings were taken on a 2.2 GHz Pentium III with 1 GB memory). To make
this approach feasible for our application, we intend to investigate how to reduce the
running time without impacting classification performance. Possible approaches are
using a coarser representation derived from the 2D view images that contains most
essential information for matching structure, and/or combining our approach with a
coarse prefiltering step that selects promising candidates quickly.

6.5 Summary and Conclusions

In this chapter we investigated a 2D structural query interface and accompanying
matching method for our 3D model search engine. Its design was motivated by the
fact that our freeform sketching interface and image matching method require queries
to look similar to the 2D projections of a desired 3D model. By allowing the user
to specify a structure instead of a sketch, we can attempt to return objects with a
similar structure. Also, evidence has been presented in the perception literature that
humans think of shape of composed of a set of simpler, basic parts.

In our initial approach, we created a simple drawing interface that supports the
drawing and manipulation of ellipses. The accompanying matching method has to
match sets of user-drawn ellipses to 2D images. A possible approach is to precompute
similar structural descriptors for these 2D images, and then use structural matching.
However, it is hard to robustly segment arbitrary images. We can also not be sure that
every user will decompose a certain object the same way. In our approach, we match
a set of ellipses directly to a 2D image. It is therefore not necessary to precompute
structural descriptors and users do not have to provide consistent input. Furthermore,
by allowing some part variation (e.g. in size, orientation) it is still possible to match
structure.

The actual matching is done by running a non-linear optimization to minimize an
error-of-fit objective function that rewards image overlap and alignment of the ellipses
with the Medial Axis, and penalizes ellipses overlapping other ellipses and shape de-
formation. The classification performance of this approach was evaluated using two
test databases containing 15 classes of 5 objects each. The first was used as a training
set to optimize the weights of the objective function. The second was used to com-
pare the classification performance with that of the image matching method of the
previous chapter. We found that the classification performance improves significantly
for classes of objects that have a similar structure but varying geometric properties,
for example, tables, chairs, and motorbikes. Other classes of objects show no im-
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provement, either because the objects look sufficiently similar for an image matching
method to be effective (e.g. passenger planes), or because the structural query was
too “generic”, and ended up matching many different objects (e.g. guns, fish).

A drawback of the structural matching method is its longer running time, cur-
rently about 50 times higher than our image matching method for a single pairwise
match. In future work, we intend to investigate how to reduce this running time with-
out impacting classification performance, for example by combining it with a coarse
prefiltering step that selects promising candidates quickly.

In other future work, we intend to design a 3D version of this interface, in which
the user draws ellipsoids. Because of the much higher cost of matching sets of ellip-
soids to 3D models, we plan to investigate if our fitting approach may be used as a
segmentation method, so each database model can be represented as a set of parts. A
user study is required that tests to what extent human shape decompositions are con-
sistent. Other user studies need to be run to evaluate the ease of use and effectiveness
of this structural matching method in practice.
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Chapter 7

Comparison of Matching Methods

7.1 Introduction

In this chapter, we evaluate the classification performance of three matching methods
described in this thesis: text, 3D shape, and 2D outline view matching, as well as their
combinations. We used a test database of 1,000 models, classified into 81 categories,
which is described in more detail in the next section. This database is a subset
of our model database of 31,000 models downloaded from the web, and as such is
representative of the kind of data we have to deal with.

From testing the individual methods, we found that both the 3D shape matching
method outperforms the text matching method. This is mostly due to the insufficient
annotation of 3D models on the web. The 2D matching method showed the worst
performance. Combining the text- and 3D shape-based matching methods by simply
computing a weighted linear combination of their matching scores further improved
classification performance.

The next section describes the creation and contents of the test database used for
these experiments. Section 7.3 has the results of the individual method comparison.
Results for combinations are in Section 7.4, followed by a summary and conclusions.

7.2 Test Database

It is important to be able to compare the performance of different classification meth-
ods. For this purpose, a good test database is essential. This database should be large,
and have a sufficient number of classes containing many different types of objects (e.g.
differing in complexity, genus, man-made vs. organic, and so on). Both small classes
(e.g. four objects) and large classes (e.g. fifty objects) should be featured. No class
should dominate the database because of its size.

Unfortunately, such a test database is not yet available for 3D shape matching.
Databases that have been used in previous work are different in every paper. Some
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of these databases are dominated by certain types of shapes, creating a strong bias in
the results. The 3D model database created by Osada et al. has been used by other
researchers, but is far too small (only 133 models) [72]. For these reasons we decided
to create a new test database, using our database of 31,000 3D models retrieved from
the web as the source. The eventual goal is to publish this database and other, larger
ones, enabling more accurate performance comparisons between different 3D model
matching methods.

7.2.1 Creating the Database

Here we briefly describe the procedure followed to create our test database. To
avoid having to manually identify near-duplicates, we clustered the models using our
3D shape similary metric as a distance measure. Both the similarity metric and
clustering method were developed by Michael Kazhdan [54]. This resulted in 15,990
clusters. The model at the centroid of each cluster was chosen as its representative.
These representative models formed the database of models which had to be manually
classified.

Next, an undergraduate student, David Bengali, created an initial classification
of these models, resulting in 384 classes. Classes such as abstract geometric shapes,
data visualizations, and molecule models were left out, because they contained either
many unspecific and/or abstract models, or were difficult to classify further without
expert knowledge. With the help of a graduate student, Phil Shilane, we further
refined the classification, resulting in a set of approximately 5,000 models. From this
set we selected a subset of 1,000 models, subdivided into 81 classes. The classes were
chosen such that (1) they represented a wide variety of models, (2) no single class
would become too large (e.g. larger than 10% of the database size), and (3) there was a
wide range of class sizes. Finally, the classes were placed in a hierarchy, using as much
as possible the superclass names provided by Wordnet (a lexical database) [68]. The
hierarchy information will be used in future work for evaluating matching methods
that work at a higher level than the “single-class” level.

7.2.2 Result

Table 7.1 lists all 81 classes, and their place in the hierarchy. The actual classes are
printed in boldface. The righthand column shows the number of models in each class.

Figure 7.1 shows a thumbnail image of a representative member of each of the 81
classes.

Figure 7.2 shows a histogram of all the class sizes. The seven smallest classes have
4 models, the largest class has 73 (humans). The median class size is 8, the average
is 12.3. 39 classes (48%) have 4-7 models, 24 (30%) classes have 8-13 models, and 18
classes (22%) have more than 13 models.
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1 animal arthropod insect ant 5
2 butterfly 6
3 spider 9
4 bird 7
5 duck 5
6 fish 7
7 dolphin 4
8 shark 7
9 mammal carnivore canine dog 4

10 hoofed bovine 5
11 swine pig 4
12 primate human 73
13 arms out 35
14 walking 8
15 reptile dinosaur trex 5
16 sea turtle 5
17 body part brain 6
18 face 32
19 hand 14
20 head 29
21 skull 7
22 building castle 8
23 church 4
24 container bottle 11
25 glass with stem 6
26 mailbox 7
27 tank 5
28 vase 18
29 device display computer monitor 12
30 tv 12
31 electrical circuit microchip 7
32 instrument eyeglasses 7
33 microscope 5
34 timepiece hourglass 6
35 watch 4
36 lamp desk lamp 10
37 street light 7
38 musical instrument electric guitar 10
39 piano 5
40 weapon firearm handgun 15
41 sword 18
42 wheel gear 12
43 wheel 8
44 food dessert ice cream 6
45 furniture school desk 5
46 seat bench 7
47 chair desk chair 15
48 dining chair 22
49 patio chair 5
50 couch 13
51 shelves 25
52 table rectangular 53
53 round 12
54 single leg 10
55 plant bush 9
56 flower with stem 13
57 potted plant 46
58 tool shovel 5
59 vehicle aircraft airplane biplane 13
60 commercial 12
61 fighter jet 50
62 glider 11
63 multi fuselage 5
64 stealth bomber 9
65 helicopter 32
66 hot air balloon 8
67 spaceship enterprise like 21
68 satellite 5
69 space shuttle 5
70 tie fighter 6
71 x wing 4
72 military tank 10
73 vessel ship 10
74 submarine 8
75 wheeled cycle bicycle 7
76 motorcycle 5
77 jeep 4
78 pickup truck 7
79 race car 13
80 sedan 16
81 sports car 19

Table 7.1: The 81 classes in our test database of 1,000 3D web models, and the hierarchy
in which they are organized. The actual classes are printed in boldface. The right column
shows the number of models in each class
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Figure 7.1: A thumbnail image of a representative member of each of the 81 classes
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Figure 7.2: A histogram of the class sizes of the 81 classes in our test database

7.3 Comparison of Individual Methods

First we examine the matching performance of each matching method individually.
Figure 7.3 shows the average precision/recall achieved by the text, 3D shape, and 2D
shape matching methods (see Appendix A for an explanation of the precision/recall
performance metric). For the 2D matching, each 3D model was represented by seven
outline views (the side and corner views, also see Section 5.5.1). The results of two
2D matching variations are shown: one for which the best single side view query was
picked for each model (simulating a user who draws the most discriminating side view
for each model), and one for which the best three views out of the full set of seven
available views was used. Using more than three views did not improve the results.
Note how the 3D shape matching methods outperforms the text matching method,
signifying the poor quality of text annotation of 3D models on the web. The 2D
sketch matching method performs even worse, showing that even if the user would be
able to supply three accurate discriminating sketches of a model, it still likely would
not be worth the effort.
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7.4 Comparison of Combined Methods

Next, we investigated if these matching methods can be combined to improve perfor-
mance. To combine the matching scores of two methods, we first mean-normalized
the scores of each individual model, and then computed a weighted average of the
resulting values: i.e. if s1 and s2 are the mean-normalized matching scores of a pair of
models, then the combined score is w · s1 +(1−w) · s2, with w the weight setting. We
computed average precision/recall for w ∈ {0, 0.05, 0.1, ..., 1.0}, and picked the value
of w which resulted in the highest overall precision. We found that the combination
text+3D resulted in higher average precision than either method alone. This did not
happen for the combinations text+2D and 2D+3D. Figure 7.4 shows the resulting
precision/recall curve of the combination text+3D, compared to the curves of the
individual methods. The optimal weight setting was (0.15 · text + 0.85 · 3D).

These results suggest that to some extent the text and 3D shape model repre-
sentations each contain information unique to its domain, such that when they are
combined, they become more discriminating. Also, there may well be other represen-
tations (e.g. appearance-based) that capture a very different aspect of a 3D model,
and as such can improve classification performance even further when combined with
our current classifiers. This is an interesting area for future research.

7.5 Summary and Conclusions

In this chapter we compared the performance of the matching methods we use for
our search engine.

From classification experiments (using a test database of 1,000 models, represen-
tative of our entire database of 31,000 models downloaded from the web), we found
that 3D shape-based matching outperform text-based matching. The main reason
is the poor quality of text annotation of web models (also see the summary of the
chapter on text queries, in Section 3.5). Text matching still outperformed our 2D
sketch matching method.

Combining the text- and 3D shape-based matching methods further increased the
average precision. This suggests that it is a good strategy to combine different types
of matching methods. In future work, we intend to experiment with different classifier
combination functions, and investigate if more information can be derived from 3D
models, to further improve the discriminating power of combined classifers.
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Chapter 8

Search Engine Usage Results

8.1 Introduction

In this chapter, we present several statistics about the usage of our search engine
in practice. To enable evaluation, every query submitted to our site is logged. The
logged data includes the query contents, client IP address, query processing time,
search results, and so on. We also log whether a user opens an information window,
a referring page is visited, and/or a model is downloaded. Note that local queries
(from the princeton.edu domain) were not included in any results. Usage results
over a shorter period of about 11 months were presented in Min et al. [69].

Of the 294,523 queries processed in an 18 month period, about 30% involved a
shape-based query interface, the remaining 70% were text queries. The most popular
shape-based query was the “Find Similar Shape” link. This query type and the text
query type resulted in the most user interest in the search results, measured as the
percentage of searches that resulted in at least one model download (about 15%).
The 3D and 2D sketch query interfaces resulted in far fewer model downloads, except
when they were used in combination with text keywords.

Measurements of the processing time of each query shows that most queries are
processed in less than a second (using a 1.5 GHz Pentium III processor). Queries that
involve the computation of a 3D shape signature (3D sketch, 3D file upload) take up
to 5 seconds.

Our search engine currently processes queries from about 1,000 different hosts
each week. About 25% of the visitors on each day are returning users.

The remainder of this chapter is organized as follows. The next section has overall
usage results, followed by sections with more detailed results on the text, 3D shape,
2D shape, and combined query interfaces respectively. Section 8.7 presents the results
of our query processing performance tests. Section 8.8 has details about the number
of visitors over time, and where most of them are from. A short summary and
conclusions can be found in Section 8.9.
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Figure 8.1: A pie chart of the relative use of each query interface

8.2 Overall Usage

During an 18 month period starting on November 18, 2001, 311,909 queries have
been processed. 294,523 of these resulted in an actual search being performed (15,556
queries were empty, i.e. searches with no text or shape input, and 1,830 file upload
queries failed). Figure 8.1 shows the relative use of each individual query interface
as a pie chart. 69.4% of all queries were text-only searches, while the remaining
30.5% were shape-based, possibly combined with text. Table 8.1 shows the number
of searches performed for each query interface type, and what percentage resulted in,
at least once, (1) the opening of an information window, (2) the visiting of a referring
page, and (3) the downloading of an actual 3D model. We hypothesize that the last
three numbers are an indication of user interest in the search results. For example, if
one query resulted in more model downloads than another, we think that the search
results were likely to have been more relevant to the user.

# searches % info % ref. % model
(%) window page download

text 204,512 (69.4) 35.1 9.3 13.5
find similar shape 43,032 (14.6) 40.0 11.7 15.3

2D sketch 29,535 (10.0) 19.8 4.1 2.4
text & 2D sketch 12,980 (4.4) 28.0 6.9 8.0

3D sketch 2,883 (1.0) 17.8 2.6 3.0
text & 3D sketch 1,152 (0.4) 31.5 9.0 10.5

file upload 234 (0.08) 32.1 8.5 11.5

Table 8.1: Relative use of each query interface, and user interest in the search results
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keywords number
car, truck, vehicle 8,829

woman, female, girl 4,765
house, building, architecture 3,876
table, chair, sofa, furniture 3,812

human, people, person 3,722
animal, dog, horse, cat 3,363

tree, plant 3,277
ship, boat 2,569

plane, airplane, aircraft 2,267

Table 8.2: Some of the most popular query terms, grouped into categories

8.3 Text Query

The text-only query interface was the most popular, accounting for almost 70% of all
queries. This may be explained by the following reasons: (1) it is the most familiar
kind of interface on the web, (2) it is easy to supply a text query, (3) the total
time from specifying the query to seeing the results is very short, and (4) users are
unfamiliar with shape queries.

The 204,512 text queries contained 33,427 unique queries. Table 8.2 shows the
most popular query words grouped into categories, and the number of times any of
these words was submitted.

15,289 text queries (or 7.5%) resulted in zero matches: these included queries
that were misspelled or in a foreign language, but also queries for objects not in our
database, e.g. “audi,” “cellphone,” and “spiderman.” These also included queries for
objects that are present in our database but are annotated incorrectly (for example,
the database contains buddha models but their filename is misspelled). In these cases,
a shape-based query may have been more effective.

8.4 3D Shape Queries

The most popular shape query type was the “Find Similar Shape” search, in which
a result from a previous search is submitted as a new query. It accounted for about
half of all shape-based queries.

In 86% of all cases, the “Find Similar Shape” search was preceded by a text
search. Combined with the fact that this query type generated the most user interest
(e.g. model downloads) in the results, this suggests that many users start with a text
search, and are able to use the “Find Similar Shape” query to home in on a desired
model.

Few people used the other 3D shape-based interfaces. About 1.4% of all the
queries involved the 3D sketching interface, and the sketches that were submitted
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are of very low quality. To use the 3D sketching tool effectively, users should take a
small tutorial, and have some 3D manipulation skills. We think this was too much of
a barrier for the average user. An evaluation of 1,000 3D sketches submitted in the
first half of 2002 was presented in Section 4.5.2. It showed that most of the models
created with Teddy are unidentifiable blobs. As a result, very few users subsequently
show interest in the search results (for example, only 3% of the queries was followed
by a model download, compared to 13-15% for other query types). Also, of the 1,653
different hosts (i.e. unique IP addresses) that used the 3D sketch interface in a period
of 1.5 years, only 78 (about 5%) used it more than once.

Even fewer people used the “upload 3D model file” feature (it is the least used
query type, with 234 queries in 18 months (0.08%)). Most of the time it is misunder-
stood, and used to enter text keywords, or upload image files.

8.5 2D Shape Queries

10% of all searches included one or more 2D sketches, with most users preferring three
sketches (50%) over a single sketch (41%) and two sketches (9%). As was discussed in
Section 5.5.3, because of the low quality of the submitted sketches, and the matching
methods’s sensitivity to extra interior detail, the search results were less useful than
for the other query types.

We also investigated what number of sketches (1, 2, or 3) resulted in the most user
interest in the matching results. The number of sketches was directly related to user
interest: of all single sketch queries, 17% resulted in the opening of an information
window. For two sketch queries this was 20%, for three sketches 24%. This suggests
that, in spite of the general low quality of the user-drawn sketches, users are able to
improve their queries by using multiple sketches. Alternatively, the increased user
interest may be explained because the user spent more time and effort creating the
query.

8.6 Combined Queries

Both the 2D and 3D sketch queries can be combined with text. These combined
queries were not used very often (4.4% and 0.4% of all queries, respectively), but
they did generate more user interest in the search results when compared to their
sketch-only counterparts (for example, 8% and 11% searches followed by at least one
model download, compared to 2.4% and 3%). Given the poor performance of the
sketch interfaces by themselves, we think that the improved quality of the results is
mostly due to the added text keywords.
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8.7 Query Processing Performance

Here we report the response times of our site for the various query types and show
that most queries are typically satisfied in less than a second (not counting network
transmission times, and local processing times).

The response time a user experiences is the sum of the time it takes for the
following operations: (1) connecting to our web server and sending query data, (2)
executing a CGI script on the web server (which connects to and has to wait for
the matching server), (3) processing and matching of the query on the matching
server, (4) returning the results to the user, and (5) rendering the results web page
on the user’s machine. The time taken in steps (1) and (4) depends on the available
bandwidth between the user’s machine and our web server, step (5) depends on the
performance of the user’s machine. Step (2) adds an estimated overhead of about
1–2 seconds. We can report accurate timings for step (3): processing and matching
of the query on the matching server.

Table 8.3 shows for each query type the average time used for processing and
matching on the matching server (a dual 1.5 GHz Pentium III running Red Hat
Linux 7.2), averaged over about 16,000 searches.

These numbers show that the response time is mostly determined by the amount
of query data that needs to be processed. Text and “Find Similar Shape” queries
take the least time, followed by queries that involve 2D sketch(es) (for which 2D
image(s) are converted to image descriptors), and queries that require the conversion
of 3D models (3D sketch and file upload). In the latter case, the 3D model file size
dominates the total processing time. The conversion times for a few example model
sizes are: 60 KB, 2,000 triangles: 4 seconds, 800 KB, 6,500 triangles: 6 seconds,
2 MB, 61,000 triangles: 13 seconds (2 MB is currently the file size limit on the “file
upload” feature).

The time between when a query arrives at the web server and when its results are
ready is about 0.4 seconds on average. To investigate how this average time increases
under increasing load, we ran two experiments in which we sent queries to our web
server at a higher rate. These queries were taken from a set of 4,000 representative

query type processing and
matching time (in sec)

text 0.22
2D sketch 0.61

text & 2D sketch 0.59
3D sketch 3.2

text & 3D sketch 3.2
Find Similar Shape 0.36

file upload 5.0

Table 8.3: Average time for processing and matching for each query type

96



queries submitted to our search engine, logged during a one week period in July 2002.
In the first test we sent on average one query every 4 seconds for a period of two
hours from a single host. In the second test we sent twice the number of queries
from 4 different hosts (which is a more than 80 times higher rate than the currently
typical rate of about 600 queries per day). The average processing time per query
increased to 0.88 and 1.46 seconds per query, respectively (the maximum times were
5 and 7 seconds), which shows that our current system will be able to accomodate
much higher loads without incurring a significant performance penalty (i.e. one where
the turnaround time becomes unacceptable for the user).

8.8 Visitors

To investigate whether people find the search engine useful, we measured the num-
ber of unique hosts using our site per week, and what percentage of them return
after a first visit. Figure 8.2 (top) shows the number of unique hosts per week us-
ing our site since the first hit arrived on November 18, 2001. Note that hits from
*.princeton.edu were not counted. During each visit on average 3.2 searches were
performed. The sharp increase in the week starting on March 10th was due to the
improved ranking of the site at Yahoo and Google. The peak in the week of November
3 occurred because our site was mentioned on Slashdot, a popular online discussion
board for technical news. As a result, during the first six hours after the post over
3,800 queries were processed. The second peak was caused by a mention on Meme-
pool, another online discussion board. The recent drop to zero was caused by a
departmental network outage.

Figure 8.2 (bottom) shows the percentage of returning hosts per week. A visitor
is counted as returning if a subsequent visit occurred on a later date than a previous
visit. It shows a clear upward trend, and currently approaches 30%, suggesting that
an increasing number of people are using the site as a useful resource.

We were also interested in how widespread the usage of our search engine is.
For this purpose we store the hostname of each visitor’s PC and count the number of
unique hostnames from each top-level domain. We received queries from 129 different
top-level domains, 112 of which were from specific countries. Table 8.4 shows the
number of unique hosts visiting from the 20 most frequent top-level domains. Note
that these numbers only give a rough indication of the relative use of our site in
each country: the .net and .com domains are international, for 25% of the searches
a hostname lookup failed, and dynamic IP addresses may cause the same host to
be counted more than once. The numbers do indicate that the usage of our site is
widespread, and highest among industrialized nations.
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domain hosts domain hosts
1 net 15,666 11 au (Australia) 987
2 com 11,214 12 jp (Japan) 824
3 fr (France) 3,093 13 es (Spain) 790
4 edu 2,145 14 be (Belgium) 489
5 ca (Canada) 1,402 15 mx (Mexico) 486
6 de (Germany) 1,349 16 pl (Poland) 437
7 nl (Netherlands) 1,335 17 ch (Switzerland) 420
8 it (Italy) 1,242 18 at (Austria) 411
9 br (Brazil) 1,105 19 ar (Argentina) 359
10 uk (UK) 1,064 20 hu (Hungary) 322

Table 8.4: Number of different hosts from the 20 most frequent top-level domains

8.9 Summary and Conclusions

In this chapter we presented results on the actual usage of the search engine site.
From analyzing the usage logs of the site, we see that the search engine has a

steady number of visitors, processing about 4,000 searches per week from about 1,200
different hosts, with a current (May 2003) total of almost 300,000 processed queries.
Examining the relative usage of each query type, we think that ease of use and
familiarity of a query interface determine its popularity: text is most popular (familiar
and easy to use), followed by “Find Similar Shape” (less familiar, but intuitive and
easy to use), 2D sketch (familiar, but harder to use), and finally the 3D shape based
interfaces (unfamiliar, and relatively hard to use).

A problem which affects the usefulness of the site is the slow increase of the number
of “dead links” (about 15% of our database when measured in February 2003), i.e.
links to referring pages or models which have become invalid. In the future, we plan
to provide cached copies of the models which are no longer available through their
original link (similar to the Google cache of web pages).
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Chapter 9

Conclusions and Future Work

This thesis examines the issues that arise when creating an online search engine for 3D
models, focusing on those related to query interfaces. The main research contributions
are:

1. new query interfaces for searching 3D models based on text keywords, 2D and
3D shape, and the combinations text+2D and text+3D

2. a 2D structural matching method based on fitting a tree of ellipses to a 2D
image, by optimizing an error-of-fit objective function. One term of the objec-
tive function computes an error-of-fit with the image’s Medial Axis, benefiting
from the Medial Axis’s structural significance, while circumventing its noise
sensitivity problem

3. evaluations of matching methods, showing that (1) 3D shape matching out-
performs text matching, mainly due to the poor quality of annotation of web
models, (2) combining 3D shape and text descriptors improves matching per-
formance, (3) both 3D shape matching and text matching outperform a shape
matching method based on matching multiple 2D projections of a 3D model,
and (4) certain classes of objects are better classified using our 2D structural
matching method, however the method is still too slow for interactive applica-
tions

4. results of a user study suggesting that shape combined with text can improve
the effectiveness of a query

5. a prototype online 3D model search engine which incorporates these query in-
terfaces, and which has been used extensively across the world. For example, in
18 months we processed over 294,000 queries from 63,574 different hosts in 112
countries, resulting in 53,192 model downloads. Furthermore, currently 20–25%
of the about 1,000 visitors per week are returning users
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6. usage results from our search engine, showing that (1) most people prefer the
simplest query interfaces (text keywords, find similar shape), and (2) both 2D
and 3D sketches are mostly of low quality, and as such produce inferior matching
results

7. a to-be published test database for evaluating 3D model matching, containing
1,000 models classified into 81 categories

There are many directions for future work. Some of the options are described
below, organized by whether they apply to query interfaces, matching methods, or
new applications altogether.

Query Interfaces
First, the existing query interfaces can be improved. As was noted in Section

5.5.3, interior detail in the user sketches greatly affects the 2D shape signature, and
as a consequence the matching results. Improvement can either be sought in increased
guiding of the user input, post-processing of user sketches, and/or incorporating the
interior detail when matching (by, for example, storing 2D views of 3D models with
interior lines, e.g. by marking edges of high concavity).

The 3D sketching interface could also be improved with increased guidance. For
our application, perhaps a parts-based interface (e.g. drawing ellipsoids) is more useful
than a freeform interface like Teddy. User studies are required that test to what
extent human shape decompositions are consistent, and that test the ease of use and
effectiveness of various query interfaces.

It will be interesting to consider different methods for specifying shape-based
queries. For instance, the following constraint-based description might be used to
retrieve 3D models of a chair: “give me objects consisting of a box-shaped seat
with four equal length and nearly cylindrical legs attached to the bottom side of
each corner and a box-shaped back above the seat with width matching that of the
seat, etc.” This approach captures parameterized classes of objects with a compact
description [28, 108].

Matching Methods
There are still other attributes of 3D models that may be queried, for example

color, texture, or structure, and for which new matching methods and query interfaces
will have to be developed. Furthermore, as we saw in Section 7.4, combining the
results of text and 3D shape matching methods can improve matching results. There
may be better ways of combining matching methods than simply mean-normalizing
and averaging individual matching scores.

We believe there is still room for improvement in the derivation of structure (seg-
mentation) of a 3D model, and its 2D projections (views). Matching user input 2D
structure directly to 2D views currently is too slow for interactive applications (see
Section 6.4.4), but matching (simple) structures can be done very quickly. Maybe
a number of suitable templates can be designed by hand (as in [4]), which are then
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matched to database models in preprocessing, to determine their class membership
and individual parameter settings (i.e. deviation from the average). Furthermore,
instead of designing the tempates by hand, these could maybe be computed from a
suitable training set [22].

Other types of shape matching problems should also be considered, for example
partial shape matching, which can be useful when searching objects in a scene (e.g.
a car in a city, a chair in a room). For example, a simple adjustment to the objective
function of our 2D structural matching method may allow sets of parts to match part
of a 2D image.

It will also be interesting to see to what extent the existing query interfaces and
matching methods can be used, or how they should be modified, for application areas
with more limited shape domains, such as molecular biology (e.g. searching for protein
antibodies), mechanical CAD, and medicine.

New Applications
Future 3D modeling systems should consider integrating shape-based matching

and retrieval methods into interactive sketching tools. For example, imagine a user
interface in which a user draws a rough sketch of a desired model, after which the
system cleans up the sketch, suggests alternatives for parts, etc., all using a large
underlying database of models and/or parts, and a fast shape matching method. In
this example shape matching and retrieval methods are integrated into a modeling
system, instead of being a separate tool like our 3D model search engine. The key
benefit in both systems is the re-use of (parts of) existing models.

To conclude, our prototype 3D model search engine has proven to be a flexible
test bed for several diverse matching and querying methods. We believe that we have
merely scratched the surface in this area of research, and that many interesting and
exciting directions still lie ahead.
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Appendix A

Precision/Recall

A.1 Introduction

This appendix discusses the precision/recall performance metric, used throughout
this thesis.

A common metric for evaluating classification experiments is the so-called pre-
cision/recall (or p/r) plot, which is produced as follows. A database of objects is
classified beforehand. The precision/recall of a single object is computed by first
matching it to all objects in the database (possibly including itself), which are then
ranked according to their similarity score. This object is a member of a certain class
with c members. We can now distinguish recall values 1/c, 2/c, ..., c/c, correspond-
ing to 1, 2, ..., c retrieved relevant results from the same class. Given a certain recall
value, for example 3/c, we can find the rank k of the 3rd object of this class in the
results. The precision is then equal to 3/k, in other words the number of relevant
results divided by the number of results it took to get this number of relevant results.

In formula form, given a query model from a certain class of size c, and a number
of returned results k, and a number of relevant results within these returned results
rel, then

recall = rel/c

precision = rel/k

A perfect classification method would always return objects from the same class as
the query object in the top c results. In this case the precision would be 1.0 for each
recall value, and the precision/recall plot a horizontal line at y = precision = 1.0. In
practice the goal is to achieve as high as possible precision values.

A.2 Things to Consider

In order to be able to properly compare classification methods, several factors have to
be taken into account when producing p/r plots of information retrieval results. For a
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more elaborate discussion on p/r plots, their problems, and suggested improvements,
see Huijsmans and Sebe [43, 44].

A.2.1 Generality

The most important parameter that is often ignored when p/r plots are presented
is the generality, which is the size of a class relative to the database size (i.e. c/d,
with d the total number of objects in the database). If precision values are simply
averaged for each model (micro-averaging), then classes with high generality can bias
the results. If, for example, one class in a test database of 1,000 models consists
of 300 models, and the objects in this class happen to be easily matched using the
tested method, the results will be biased. To alleviate this problem, sometimes macro-
averages are also shown: here the class averages are computed first, which are then
averaged. However, this could cause small classes to bias the results.

A solution is to explicitly show the dependency on generality by adding a third
axis to the precision/recall graph. In practice, the generality values can be binned to
integer values − log2(g) (which for our 1,000 model test database would be five bins,
[− log2(0.004),− log2(0.073)] ≈ [4, 8]). The results can then be presented as five 2D
precision/recall graphs, one for each generality bin.

Additionally, the distribution of class sizes should be published (as for example in
Figure 7.2). When plots for different generality bins are given, the number of classes
in each bin should also be published.

Showing these results can be especially helpful when different methods are com-
pared using different databases. In our case, when comparing methods using the same
database, it may still be useful to see if different methods behave differently depend-
ing on the class size. In this thesis we show graphs with micro-averages only, with
the added note that all corresponding macro-averaged graphs were also produced, to
verify that they showed the same qualitative results.

A.2.2 Miscellaneous class

A next, smaller issue is how to deal with the “miscellaneous” class present in some test
databases, i.e. a class of objects that does not fit into any meaningful class, or whose
class consists of only one object (Huijsmans and Sebe call this the “embedding”, the
number of additional irrelevant items in the database [43]). It is important to state
if the class was discarded altogether, or if its members could be part of the results
(because this makes it more difficult to achieve high precision). It does not make
sense to use miscellaneous objects as queries.

The only test database used in this thesis that has a “miscellaneous” class is the
database described in Section 4.5.1. In the experiments described in Section 4.5.1
and 5.5.2, the miscellaneous objects could be part of the results.
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A.2.3 Possible Query Results

Another fact which should be clearly stated in the results is whether the query itself
can be part of the results. This greatly affects the average precision values, since it
is expected that if the query can be part of the results, it will show up very high in
the ranked results.

For most matching methods we expect the “nearest neighbor” (i.e. the closest
match) of each query to be the query itself. Thus, for example, in the similarity
matrices in Figure 6.29 we expect the nearest neighbor (denoted by the n symbol)
to appear along the diagonal.

A.2.4 Random Results

Each precision/recall graph should include a curve which shows the performance of a
random retrieval method. Besides giving an indication of the improvement of a certain
method over random retrieval, it also gives us a clue about the “average generality”
of a database: if there are only a few large classes, the chance of success of a random
query would be too high, which would be visible in the height of the random retrieval
precision/recall curve.

A.2.5 Averaging Precision Values in Recall Bins

In this last section we describe in detail the method we use for averaging precision
values. If we want to present an average precision/recall graph in which the precision
values are averaged in recall bins, and the test database has varying class sizes, then
we have to be careful about how to average values of small classes.

Typically the domain of recall values [0, 1] is subdivided into intervals (bins) of
equal width. Given a certain bin, the closest actual recall value for a specific class is
computed, and the corresponding precision value is added to this bin. However, for
small classes it does not make sense to compute the precision for small recall values.
For example, for a class of size 4 the relevant recall values are 0.25, 0.5, 0.75, and
1.0 (corresponding to 1, 2, 3, and 4 returned relevant results). If, for example, we
need the precision value for a bin with its center at 0.35, for this class we can return
the precision at 0.25 (since it is the closest recall value). However, if the bin has its
center at a value < 0.125, we can no longer use the value at 0.25. The precision value
effectively is 0.0/0.0 and thus undefined, and should not participate in the averaging
for this bin.

To illustrate this procedure more precisely, we now give a function which computes
a precision value given a recall value, query class size, and matching results. If the
number of bins is 20, for example, this function is called with recall values 0.05, 0.1,
0.15, ..., 1.0. The bins then are the intervals [0.025, 0.075], [0.075, 0.125], etc. Note
that this function is not the most efficient possible.
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//

// given:

//

// query_id model id of query model

// class_ids[] class ids of models, indexed by model id

// class_sizes[] class sizes, indexed by class id

// results[] sorted array of matching results (model ids)

//

int compute_precision(float recall, float *precision_p)

{

int query_class_id = class_ids[query_id];

int target_relevant_retrieved =

(int)(floor(recall * class_sizes[query_class_id] + 0.5));

// if we’re below the minimum, signal that this value should

// not participate in the average

if (target_relevant_retrieved == 0) return 0;

int nr_relevant_retrieved = 0;

int nr_retrieved = 0;

int i = 0;

while(nr_relevant_retrieved < target_relevant_retrieved) {

int model_id = results[i];

i++;

nr_retrieved++;

int other_class_id = class_ids[model_id];

if (query_class_id == other_class_id)

nr_relevant_retrieved++;

} // while

*precision_p = (float) nr_relevant_retrieved / nr_retrieved;

// signal success

return 1;

} // compute_precision_recall
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Appendix B

Implementation Details

B.1 Introduction

This appendix describes implementation details of our search engine. Many sections
refer to actual files and directories on the network of the Princeton computer science
department.

Our 3D model search engine system executes in three main stages, as shown in
Figure B.1. In the first stage, the 3D model data we want to make available is
acquired. Next, this data is indexed such that later queries can be answered quickly.
The third stage is the online component of the system, which matches user queries
to the database in real-time, and returns results.

Figure B.2 shows an overview of the dataflow in the search engine. The individual
steps are described in more detail in the following sections.

3D Model
Database

Analysis and
Indexing

Indices and
Metadata

Query Interface

Query Processing
and Matching

Web

Acquisition Analysis

on−line

Crawler

Results

User

off−line

Matching

Figure B.1: High-level schematic of the three main components of our search engine
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VRML File

PLY File

Thumbnails

Relevant  Text 2D  Images

CrawlerWeb

User

on−line

off−line

Cached Results Text Matcher 3D Matcher 2D Matcher

Matching ServerWeb Server

Repository Text Index 3D Index 2D Index

Descriptor & Index
Compute 2D ShapeCompute 3D Shape

Descriptor & IndexIndex Text

Extract Text Convert to PLY Create 2D Images

Create ThumbnailsConvert to VRML 2

Referring

Figure B.2: Dataflow overview of the search engine

B.2 Acquistion

B.2.1 The Crawler

The crawler consists of a single server and multiple clients. The server maintains hash
tables of visited and pending URLs, manages site priorities, and coordinates opera-
tions on the clients. It is written in C (because it performs all the computationally
intensive tasks) and runs on a 733 MHz Pentium III machine with 384 MB memory
(square). The server memory size determines the maximum size of the hashtable,
and thus the maximum number of URLs that can be crawled. Note that the server
makes sure that only one client at a time visits a site, and that the robots.txt

protocol is being honored.
During a crawl, we run 80-100 simultaneous client processes on a single 400

MHz Pentium II machine with 384 MB memory, and 400 GB of RAID-5 disk space
(triangle). The client software is written in Perl.

The following instructions were written by Alex Halderman on August 11, 2002:

Starting the crawler

Start server on square:
cd /data/c3/server

./c3s

Start clients on triangle:
cd /data/c3/client

./c3c
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Terminating the crawler

You can kill all the processes by removing the lockfile:
rm -f /data/c3/lockfile

This happens automatically when either client or server is shut down.

Monitoring progress

See models as they are located:
tail -f /data/c3/client/data/models.list

Client logs are located in /data/c3/client/data/log.
Remotely observe server status:
watch cat /data/c3/server/data/stats.latest

Administration

Start a new crawl from scratch:

1. Stop the client and server

2. Remove existing data files:
rm /data/c3/server/data/*

rm /data/c3/client/data/log/*

rm /data/c3/client/data/tmp/*

rm /data/c3/client/models.list

3. Generate new server mmap:
cd /data/c3/server/src

make init

4. Restart server, add seeds, restart clients

Add initial seeds: This is only necessary when starting a fresh crawl or to add
new seeds to a running crawl. With the server running, type:
cd /data/c3/utils/seed

./seed

Place more urls and queries in data/forced.1 and data/queries.1 to assign
them to priority level 1. Run ./seed -q to re-execute Google queries instead of
using cached results.
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B.3 Preprocessing

B.3.1 File Organization

All model databases and related files are at /n/fs/shapedata, a 200 GB network
disk partition. The support staff does not make backups of this disk. One re-
cent (March/April 2003) backup of all four model databases is on triangle:/data.
Program files are stored on a 2 GB partition at /n/fs/shape, which is backed
up once every night. These partitions are mounted as /project/shapedata and
/project/shape on chef, which is an SGI running Irix 6.5. triangle:/data is
mounted as /hosts/triangle/data on the public Linux servers.

The web model database is in a subdirectory of shapedata called db. The
commercial databases are in vp db (Viewpoint), esp db (De Espona), and cf db

(CacheForce). In future work, the commercial databases should be combined into a
single database.

Each model has been assigned a unique number, or “model id” (or mid). For the
Viewpoint database, these are identical to the numbers that Viewpoint uses. The
files pertaining to a single model are then located in a directory
/n/fs/shapedata/<db>/<subdir>/m<mid>, where <subdir> = b<mid> / 1000c.

In the web database, models with ids < 23000 are models from the first crawl.
Models with ids >= 25000 are models from the second crawl. Models with ids >=
23000 and < 24000 were the models originally collected for Rob Osada’s Shape Dis-
tributions paper [72]. These have been removed since they were copies of web models
anyway.

The following list describes the subdirectories in each model directory, and the
files they contain.

• model

For the models from the first crawl: the main model file, originally named
m<mid>u<url id>.root.wrl. Symlinks m<mid>.wrl and root.wrl, pointing to
this file, have been added. This directory also contains dependent files, i.e. in-
cluded VRML files and texture files. These files have been renamed, both in
the directory as well as in the VRML file(s) itself. File references to VRML
EXTERNPROTO’s currently are not parsed correctly by the crawler. If the
files were originally in the VRML 1.0 format, the original file is also present
with the extension .wrl1.
For the models from the second crawl: because these files may be from com-
pressed archive files, and a single archive file potentially contains many models,
here the model directory is a symbolic link to a directory below
triangle:/data/c3/pipeline/data which contains all relevant files. In the
future, these files should also be moved to appropriate directories on shapedata

• info

Informational files about the model. The file info.dat has counts of the number
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of triangles, quads, other polygons, and triangles after triangulation. It also has
bounding box dimensions (after normalization such that the model fits in a unit
cube), and three suggested cameras (position, lookat, up vectors), which are no
longer used.

The files link.m and link.r have information on the link status of the model
file and the referring page, respectively. These files are produced by the script
/n/fs/shape/jhalderm/linkcheck/lc.pl.

The file error.dat is generated during the conversion from VRML 2.0 to PLY,
and contains error messages that were generated during conversion (see also
Section B.3.5)

• outlines

If present, this directory contains the seven outline images used for the 2D
sketch matching, as JPEG files. The .sig files there are the accompanying 2D
signature files (these may be outdated). Note that not all models from the web
database have these images (see Section B.3.7 for details)

• ply

This directory contains a single file m<mid>.ply, a PLY file with only the con-
verted geometry of the model, after triangulation

• segments

Segmented versions of the model, by connected components (m<mid> cn.ply),
VRML IndexedFaceSet nodes (m<mid> fs.ply), or VRML leaf grouping nodes
(m<mid> gr.ply). The corresponding .dat files contain the number of segments
in each of these model files. These files were used for a different project

• text

The text information for the model. referrer.txt has a copy of the referring
HTML page (as well as some other data fields at the top, for example, the
original model URL). terms.txt contains the words that were extracted from
the various text sources for this model. terms proc.txt is the processed version
of terms.txt (stop words removed, synonyms added ...). This last file is used
to build the text index. Also see Section B.3.4

• thumbnails

Various thumbnail images of the model. [small|large][0|1|2].[gif|jpg]

are the original thumbnail images (generated using Cortona, Internet Explorer,
and a Visual Basic script running under Windows 2000). The files
new [small|large][0-7].jpg are the new thumbnails, generated using mc (my
“all in one” program). The Viewpoint and De Espona thumbnails were auto-
matically retrieved from the web using a dedicated script. Their filenames are
slightly different (also see Section B.3.3 on thumbnail generation, and Section
B.4.6 on building a results page)
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Format Converter

VRML 1.0 vrml1ToVrml2

Inventor ivToVRML

AutoCAD DXF
Wavefront OBJ
Lightwave LW

polytrans

3D Studio 3DS
3D Studio MAX 3D Studio MAX

Table B.1: Supported 3D model formats, and converters used to convert to VRML 2.0

Several directories (including model) have a zero-length file index.html. This is
a simple way to prevent people from browsing directories should they enter specific
paths to model file directories in the URL field of their browser.

In principle each file and directory should be writeable by members of the Unix
shape group (but this may not be the case, many files may still be owned by min

or jhalderm). Note that all directories with models from commercial databases are
accessible by the file owner only.

Most processing scripts that take ranges take three parameters: database name,
starting directory, and ending directory (these scripts can be recognized by their
inclusion of ../text/set start end.pl).

B.3.2 Conversion to VRML 2.0

Because we generate thumbnail images, parts information, and text information from
VRML 2.0 files, all files that are not in this format first have to be converted. Table
B.1 lists the formats that are currently supported, and for each format the converter
we use to convert it to VRML 2.0. All converters run under Irix 6.5, except 3D Studio
MAX, which runs on a PC. 3D Studio MAX was used to convert the models from
the De Espona database (using a separate batch conversion script).

B.3.3 Thumbnail Creation

The initial thumbnail generation setup (the Cortona VRML client by ParallelGraph-
ics, running in Internet Explorer under Windows 2000, driven by a Visual Basic
script) proved to be very unstable. After adding material and texture support to our
VRML parser, we could use our own program to generate thumbnails.

The script create models list.pl in /n/fs/shape/min/thumb creates a list of
model files for which thumbnails have to be generated. Only files with at least one
triangle are included. For example: create models list.pl db 0 1 will create a
file list db 0.dat in /u/min/mc/mc, containing entries for the first two directories of
the web database. This list is input to mc (which is in /u/min/mc/mc). This program
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has a macro facility which allows the recording and playback of button clicks. The file
thumb.macro in /u/min/mc/mc/macros contains the appropriate button sequence for
generating the current set of 8 thumbnail images. The first line of the list of models
has the name of the macro to be executed for that list. Invoke mc as follows: mc -dp

-ml <model list filename>. Click the button “Process list” to start the process.
The images are captured to a subdirectory capture in /u/min/mc/mc. A checkbox in
mc controls whether the thumbnails are written to their appropriate subdirectories.

Make sure that the disk which holds the capture directory has plenty of space
available. Do capture from a local display, on a PC with a fast graphics card (i.e. do
not run the capture process on one of the public Linux servers and display locally).

B.3.4 Text Extraction and Indexing

The aforementioned file referrer.txt and the model’s VRML file(s) are used as
sources for the text extraction.

The Perl scripts dealing with text are in /n/fs/shape/min/text. The scripts to
run, and their functions, are:

• extract words.pl

This script processes the referrer.txt file and the VRML model file. It pro-
duces a file terms.txt that contains the filename, the filename without digits,
extension, web page title, anchor text, web page context, and model file identi-
fiers. Digits are encoded as words, with an ’x’ before and after it (for example,
a 3 becomes “xthreex”). This to enable text queries with numbers (like “747”).
Recently this script has been updated to also parse included model files (in-
cluded using the VRML Inline node)

• rem stop.pl

This script removes stop words from the terms.txt file, and adds Wordnet
synonyms for the filename. If no synonym could be found for the filename,
the anchor text is tried instead. Note that the following environment variable
has to be set: setenv WNHOME /n/fs/shape/min/wordnet1.7.1. It produces
a file called terms proc.txt. Constants near the top of the script control the
maximum total number of words, and the maximum number of Wordnet senses
and hypernyms to use

• make rainbow source.pl

This script combines the terms proc.txt files into one large text file, with one
line per model. The first and second word on each line have to be the document
name and class name. The class name is just the model id

• create indices

This shell script runs rainbow to create indices for the total database, and for
each of the four databases individually (web, viewpoint, de espona, cacheforce).
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Each index is written to a subdirectory in
/n/fs/shape/min/server/sigfiles/text

B.3.5 Conversion from VRML to PLY

The same program that is used to generate the thumbnail images, mc, is used to
convert the VRML files to PLY. A derived program called mconv (which essentially
is mc without the user interface) can also be used to do the conversion. Run mconv

without parameters for a usage summary.
A Perl script called cply.pl (in /n/fs/shape/min/process) runs the conver-

sion for a sequence of models. Note that this script also creates the info.dat and
error.dat files in the model’s info subdirectory.

For those interested, the source code to support VRML is in /u/min/cc/vrml.
The classes for the internal mesh data structure are in /u/min/cc/geom. The class
MeshFile in that directory has an extensive (excessive) function traverse vrml node

which does the right thing for most of the VRML geometry nodes (in particular, ma-
terial and texture associations, triangulation, and texture coordinate computation).

B.3.6 3D Shape Descriptors

Use the program L2ModelDatabase, written by Misha Kazhdan, to generate shape sig-
nature databases. The file is in /n/fs/shapedata/misha/InProgress/L2ModelDatabase.
A copy is in /n/fs/shape/min/server/bin. It takes two files as input: one with a
list of PLY files, one with a list of model ids. The commandline to use:
L2ModelDatabase new HarmonicFourierCharged3D 1 <PLY file list> <id list>

Run L2ModelDatabase without parameters to get a usage summary.

B.3.7 2D Views

The 2D orthographic outline images of the models are created in a way similar to
the thumbnail images (see Section B.3.3). The same model list file has to be created.
After the first crawl, about 2,000 models were designated to participate in the 2D
sketch matching. The list of ids was converted to a list suitable as input to mc by a
script vis to filelist.pl in /n/fs/shape/min/process.

A macro outlines is used to generate the 7 outline images. Note that several
options have to be set in mc before clicking the “Process list” button: disable thumb-
nail, enable “black and white”, disable wireframe, disable (toggle) lighting, enable
orthographic, disable grid, disable axes, enable pgm, enable outline, enable capture
in subdirs.

In future work, the source images could be made more suitable for matching by
first filling in interior holes, and then dilating the resulting image a few times (to
smooth the boundary), before detecting the boundary.
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B.3.8 2D Shape Descriptors

To generate a 2D shape descriptor database you should also use L2ModelDatabase

(see above, Section B.3.6). The commandline changes slightly:
L2ModelDatabase new <db name> Fourier2D 7 <PGM file list> <id list>

In this case the PGM file list will have 7 times more lines than the id list.
Run L2ModelDatabase without parameters to get a usage summary.

B.4 The Search Engine Site

B.4.1 Overview

The search engine site is accessible at the URL http://shape.cs.princeton.edu.
This is a virtual web server run by the Princeton CS department. A request for the
main site URL will load the file index.cgi from /n/fs/shape/www. This script
logs the date, time, remote hostname, referring web page and browser used (to
reflog.dat in /n/fs/shapedata/min/reflog) and then redirects the browser to
the file search.html.

search.html simply creates two HTML frames. The “query frame” on the left is
filled by query.cgi, the “results frame” on the right by results.cgi. Both scripts
are in ./search, a symbolic link to /n/fs/shape/min/search. This directory holds
all relevant scripts, pages, applets, etc., for the online site, as well as other data such
as a copy of the matching server’s log files, and, for example, the CS111 user study
site.

For the text & sketch query types, query.cgi constructs a small web page with a
Java applet that combines the text and the 2D/3D sketch interfaces. The Javascript
code is there only to disable and enable the “Search” button at the appropriate times
(it is important that it is not possible to start multiple searches from the same page,
and to give feedback to the user that a search is underway).

The Java applet calls results.cgi for the results frame, and passes it the neces-
sary parameters. results.cgi runs on the web server, and calls get results.cgi,
which is a relatively small script that communicates with the matching server. Once
the results are in, results.cgi constructs a results page. The results page has a
small Javascript function that re-enables the Search button, and another function
that disables the search again if a user clicks a “find similar shape” link.

B.4.2 Text and/or 2D Sketch Queries

The query interface for text and/or 2D sketch queries is implemented completely in a
Java applet. The source code for this applet is in /n/fs/shape/min/search/sketch.

The main class is Sketch, and is derived from SearchApplet. SearchApplet is an
applet that implements a do search function (from the interface Search)(this inter-
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face can probably be dropped). The Sketch class has an array of three SketchCanvas
classes, in which the actual drawing takes place. Note that the drawing is rendered
using two-pixel thick lines, but is stored as single-pixel lines. SketchCanvas also
keeps track of the drawing history (commands and timestamps, mouse coordinates)
and stores them in an instance of the History class.

The main applet also has an instance of QueryPanel, which holds the “Search”
button, the model database selection list, and the text keyword entry field. This
class, as well as the SearchApplet class is also used by the text and/or 3D Sketch
interface (described in the next section).

For a query, the entered text, 2D sketches, and drawing history are sent to the web
server. The URL with this information is constructed in the Submit class. This class
also sends the data. The images are sent as indices of pixels that are set. The Submit
class requests the script sketch.cgi. This script saves the the sketches as PGM files
to image upload <random>.pgm in /n/fs/shapedata/tmp/<year>/<month>/<day>,
where <random> is 6 random characters. The history files are saved to the same
filename with the extension .hist. The PGM filenames are returned to the Submit

class, which uses those to construct a query (by calling results.cgi from Sketch).
The Globals class holds some global constants (fonts, colors, etc.).

B.4.3 Text and/or 3D Sketch Queries

The query interface for text and/or 3D sketch is very similar to the text and/or 2D
sketch interface, and also implemented in Java. The source code is in the directory
/n/fs/shape/min/search/teddy comb.

The main class is Teddy, also derived from SearchApplet. The original source
code (written by Takeo Igarashi) was modified slightly: some buttons (such as the
“Save” and “Bend” buttons) were removed. Also, the QueryPanel class mentioned
in the previous section was added, and a do search function was added to Teddy.

QueryPanel.java, SearchApplet.java, Search.java and Globals.java are sym-
bolic links to the corresponding files in the 2D sketch source directory.

Submit.java is different for this interface, because different data is sent (in this
case, the 3D model in Wavefront .obj format). The sequence is the same: first a script
teddy.cgi is called, which saves the model file to a file teddy upload <random>.obj

and returns this filename to the applet. After this, results.cgi is called (from
Teddy).

B.4.4 3D File Upload

This interface is implemented as an HTML form in query.cgi. It has five fields: a
Search button, a database selection list called “dataset”, one file browser field called
“modelfile”, and two hidden fields “input” (value = “file”) and “method” (value =
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“harmonic”). These variables and their values are passed to results.cgi after the
user submits the form.

B.4.5 Find Similar Shape

The “Find similar shape” links on the results page directly call results.cgi again
with the appropriate parameters, the most important being mid, which holds the
model id of that particular result model.

B.4.6 The Results Page

The results page is constructed by results.cgi. Many different pages can be gen-
erated by this script. For now, we’ll just look at the function print results. This
function parses the result string returned by get results.cgi (the script that did the
actual communicating with the matching server). It fills variables as they come along,
and as soon as the word end model is encountered, a function print model info is
called, which generates the right HTML for that particular result model. This in-
cludes generating the right links for the information window, a “find similar shape”
request, and the thumbnail image. thumbnail.pl has a function which returns the
right thumbnail image URL depending on the database and model id.

Caching Results

The matching server writes the model ids and scores of each search to an individual file
in /n/fs/shapedata/tmp/<year>/<month>/<day>/results <ip> <search id>.dat.

If results.cgi determines that it was called with a “browse” request (the si

(search id) parameter was not empty), it will read the results from this file, and use
these to construct the results page.

Note that the “page view” itself is logged, appended to a file pageview <ip>.dat

in the same directory.

B.4.7 The Information Window

If a user clicks on a thumbnail image on a results page, an information window about
that particular model is shown. The information in this window is created by the
script info.cgi.

The script itself should be self-explanatory. Note that the action is logged in a file
/n/fs/shapedata/min/info log/<year>/<month>/<day>/info <ip> <search id>.dat.

Logging redirects

The links in the information window to the referring page and the model file itself
are indirect, and go through a script redirect.cgi.
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The fact that such a link was clicked is logged in
/n/fs/shapedata/min/redirects/redirect <ip> <search id> <type>.dat

where type is either model or ref.

B.4.8 Miscellaneous

Feedback

The “Contact Us” link in the header brings up a simple HTML form where people
can type in their comments, and optionally their e-mail address. This page is also
constructed by results.cgi.

Upon submitting the form, feedback.cgi is called, which saves it to
/n/fs/shapedata/min/feedback/feedback <ip> <random>.txt

where <random> is a random sequence of six characters) and forwards a copy to my
e-mail address.

Error log of http://shape.cs.princeton.edu

The support staff has set up an error log viewer at:
https://csguide.cs.princeton.edu/log view/?server=shape.cs.princeton.edu

The most frequently occuring errors are references to .au files (sound files) from
Teddy, which should be removed from the source. There are also many references to
non-existing “BeanInfo” classes, which are caused by a quirk in Internet Explorer. A
solution could be to create empty stub classes for each of these.

B.5 The Matching Server

The files related to the matching server are in /n/fs/shape/min/server. There, the
subdirectory bin holds required binaries, and sigfiles holds all necessary indices
(2D and 3D signature databases, and text indices for the various model sets). The
current machine we use as a matching server is hexagon, a Dell Precision 530 with
two Intel Xeon processors at 1.5 GHz, 512 MB memory, running Red Hat Linux 7.2.
It has one 36 GB SCSI disk.

The main server control script is server.cgi (should be called server.pl). It
listens on port 7073 for matching requests from get results.cgi

(in /n/fs/shape/min/search). For each client, it forks a separate process which
reads commands and executes those. Most commands just set the values of parame-
ters. The query command causes an actual search to be executed.

All matchers run as separate server processes on hexagon. Shell scripts to start
these servers are run harm (for the 3D server), run 2d (for the 2D server), and
run text (for the text servers) in ./bin. The 2D and 3D servers load all databases
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Figure B.3: Query processing and matching stage. The path of a 3D sketch query has
been highlighted

and are capable of answering queries on subsets. For text queries, five servers are run
(one for each database, and one for all of them combined).

The script cs.pl has functions for processing each query type. It calls a function
in matching server.pl to connect to the appropriate server, then sends the query,
and stores the results. For combined queries (for example, text and 2D sketch) both
queries are performed separately and the results are combined (the scores are mean
normalized and averaged, note the special cases for models that have a score from
one query but not from the other).

The supporting script gs.pl has functions to generate 2D and 3D signatures,
convert models, etc. These are called for a 3D file upload query, for example.

Also note the careful logging and message printing code. Log files should always
be locked before writing to them. The log messages related to one client are first
collected in a string, and then written in one go after a client disconnects (because
there can be many clients connected at the same time).
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B.5.1 Running the server

The server is run locally on hexagon. The files are in /usr/min/server.
First, run /home/min/tst on hexagon to see if the server is running. If it is, it

should show one server.cgi process, up to four L2ServerNov3 processes, two with
port 9100, two with port 9200, five rainbow processes (one for each database, and one
for all), and one check server.pl process. This last process is a small script that
checks periodically if the L2ServerNov3 processes are running, and if not, restarts
them (they rarely crash, but still do).

To start a server from scratch, do the following:

• in /usr/min/server/bin, run run text, run 2d & and run harm &

• from the same directory, run check server.pl &

• in /usr/min/server, run server.cgi &

B.5.2 Log Analysis

First, kill the running server.cgi and start a new one. The script will create a new
log file in /usr/min/server/log. Copy the latest log file to
/n/fs/shape/min/search/log. Careful: note the differing sequence numbers in
both directories. The script next.pl in /usr/min/server performs these steps au-
tomatically. This script requires /n/fs/shape to be mounted on hexagon at /shape.
To mount this directory, run:
smbmount //fs/shape /shape -o username=<username>,workgroup=cs,password=<password>

Next, on one of the public Linux servers, change to /n/fs/shape/min/weblog and
run analyze.pl. It starts by default with log file log00085.dat (there were no out-
side hits before then). This script creates web pages in /u/min/public html/mc/log.
Some of the data files it creates are input to PHP scripts in that directory. These
scripts use the JpGraph package to generate a few graphs on the log pages.
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