
3
Introduction to the Architecture

of Symbian OS

3.1 Design Goals and Architecture

Architecture is goal driven. The architecture of a system is the vehicle
through which its design goals are realized. Even systems with relatively
little formal architecture, such as Unix,1 evolve according to more or
less well-understood principles, to meet more or less well-understood
goals. And while not all systems are ‘architected’, all systems have an
architecture.

Symbian OS follows a small number of strong design principles. Many
of these principles evolved as responses to the product ethos that was
dominant when the system was first being designed.2 That ethos can be
summarized in a few simple rules.

• User data is sacred.

• User time is precious.

• All resources are scarce.

And perhaps this one too, ‘while beauty is in the eye of the beholder,
elegance springs from deep within a system’.

In Symbian OS, that mantra is taken seriously. What results is a handful
of key design principles:

• ubiquitous use of servers: typically, resources are brokered by servers;
since the kernel itself is a server, this includes kernel-owned resources
represented by R classes

1 ‘Bottom up’ and ‘informal’ typify the Unix design approach, see [Raymond 2004,
p. 11].

2 That is, the ethos which characterized Psion in the early-to-mid 1990s. By then, the
company was a leader in the palmtop computer market. It was a product company.



46 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• pervasive asynchronous services: all resources are available to mul-
tiple simultaneous clients; in other words, it is a service request and
callback model rather than a blocking model

• rigorous separation of user interfaces from services

• rigorous separation of application user interfaces from engines

• engine reuse and openness of engine APIs.

Two further principles follow from specific product requirements:

• pervasive support for instant availability and instant switching of
applications

• always-on systems, capable of running forever: robust management
and reclaiming of system resources.

Symbian OS certainly aims at unequaled robustness, making strong
guarantees about the integrity and safety (security) of user data and the
ability of the system to run without failure (to be crash-proof, in other
words). From the beginning, it has also aimed to be easy and intuitive
to use and fully driven by a graphical user interface (GUI). (The original
conception included a full set of integrated applications and an attractive,
intuitive and usable GUI; ‘charming the user’ is an early Symbian OS
slogan.3)

Perhaps as important as anything else, the operating system set out
from the beginning to be extensible, providing open application program-
ming interfaces (APIs), including native APIs as well as support for the
Visual Basic-like OPL language and Java, and easy access to Software
Development Kits (SDKs)4 and development tools.

However, systems do not stand still; architectures are dynamic and
evolve. Symbian OS has been in a state of continuous evolution since it
first reached market in late 2000; and for the three years before that it had
been evolving from a PDA operating system to one specifically targeting
the emerging market for mobile phones equipped with PDA functions. In
view of this, it may seem remarkable that the operating system exhibits
as much clarity and consistency in design as it does.

3 For example, see almost anything written by David Wood. Today, the GUI is no longer
supplied by Symbian, however GUI operation remains intrinsic to the system design. The
original integrated applications survive in the form of common application engines across
multiple GUIs, although their inclusion is a licensee option.

4 Symbian no longer directly supplies SDKs, since these are GUI-dependent. Symbian
provides significant ‘precursor’ content to licensees for inclusion in SDKs, including the
standard documentation set for Symbian OS APIs.



DESIGN GOALS AND ARCHITECTURE 47

Architectures evolve partly driven by pressures from within the system
and partly they evolve under external pressures, such as pressures from
the broad market, from customers and from competition.

Recent major releases of Symbian OS have introduced some radical
changes, in particular:

• a real-time kernel, driven by evolving future market needs, in partic-
ular, phone vendors chasing new designs (for example, ‘single core’
phones) and new features (for example, multimedia)

• platform security, driven by broader market needs including operator,
user and licensee needs for a secure software platform.

While both are significant (and profound) changes, from a system
perspective they have had a relatively small impact on the overall shape
of the system. Interestingly, in both cases the pressure to address these
particular market needs arose internally in Symbian in anticipation of the
future market and ahead of demand from customers.

It is tempting to idealize architecture. In the real world, all soft-
ware architecture is a combination of principle and expediency, purity
and pragmatism. Through the system lifecycle, for anything but the
shortest-lived systems, it is part genuine, forward-looking design and part
retrofitting; in other words, part architecture and part re-architecture.

Some of the patterns that are present in Symbian OS were also present
(or, in any case, had been tried out) in its immediate precursors, the
earlier Psion operating systems. The 16-bit operating system (SIBO) had
extended the basic server-based, asynchronous, multitasking model of
previous Psion products and re-engineered it using object-oriented tech-
niques. SIBO also pioneered the approach to GUI design, designed
communications services into the system at a deep level, and experi-
mented with some idioms which have since become strongly identified
with Symbian OS (active objects, for example).

In fact, surprisingly many features of Symbian OS have evolved from
features of the earlier system:

• the fully integrated application suite: even though Symbian OS no
longer includes a user interface or applications, it remains strongly
application-centric

• ubiquitous asynchronous services

• optimization for battery-based devices

• optimization for a ROM-based design: unlike other common oper-
ating systems, SIBO used strategies such as ‘execute-in-place’ (XIP)
(compare this with MS-DOS, which assumes it is loaded into RAM



48 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

to execute) and re-entrancy5 (MS-DOS is non-re-entrant), as well as a
design for devices with only solid-state disks

• sophisticated graphical design: from the beginning, SIBO supported
reactive repainting of windows and overlapping windows, in an age
of tiled interfaces (for example, Windows 2.0 and the character-
mode multitasking user interfaces of the day, such as TopView and
DesqView)

• an event-driven programming model

• cross-platform development: the developers’ mindset was more that
of embedded systems engineering than the standard micro-computer
or PC model.6

SIBO also introduced some of the programming constraints which
show up in Symbian OS, for example forbidding global static variables
in DLLs (because the compilers of the day could not support re-entrant
DLLs), an early example of using the language and tools to constrain
developer choices and enforce design and implementation choices, a
consistent theme in Symbian’s approach to development.

Symbian OS, or EPOC as it was then, was able to benefit from the
experience of the earlier implementation in SIBO. The 16-bit system was,
in effect, an advanced prototype for EPOC.

Meanwhile, of course, Symbian OS has continued to evolve. In par-
ticular, some crucial market assumptions have changed. Symbian OS
no longer includes its own GUI, for example; instead it supplies the
framework from which custom, product-ready GUIs such as S60, MOAP
and UIQ are built. Hardware assumptions have changed quite radically
too. Execute-in-place ROMs, for example, depend on byte-addressable
flash silicon (so-called NOR flash); more recently, non-byte-addressable
NAND flash has almost wholly superseded NOR flash, making execute-in-
place a redundant strategy. Other technology areas, for example display
technologies, have evolved almost beyond recognition compared to the
4-bit and 8-bit grayscale displays of earlier times. Not least, the tele-
phony standards that drive the market have evolved significantly since
the creation of the first mobile phone networks.

Despite sometimes radical re-invention and change, the original design
conception of Symbian OS is remarkably intact.

5 In designing for re-entrant DLLs (that is, re-entrant shared libraries), SIBO was signifi-
cantly in advance of the available tools. For example, C compilers were poor in this area.
Geert Bollen makes the point that it is not just language features that determine whether a
given language is suitable for a particular project; the tools infrastructure that supports the
language is equally important.

6 It is interesting to note that Bill Gates has identified as one of Microsoft’s key strengths
(and, indeed, a key competitive advantage), that it develops all of its systems on its own
systems. The advantage breaks down completely in the mobile phone context.



WHY ARCHITECTURE MATTERS 49

3.2 Basic Design Patterns of Symbian OS

The design principles of a system derive from its design goals and are
realized in the concrete design patterns of the system. The key design
patterns of Symbian OS include the following:

• the microkernel pattern: kernel responsibilities are reduced to an
essential minimum

• the client–server pattern: resources are shared between multiple users,
whether system services or applications

• frameworks: design patterns are used at all levels, from applications
(plug-ins to the application framework) to device drivers (plug-ins to
the kernel-side device-driver framework) and at all levels in between,
but especially for hardware adaptation-level interfaces

• the graphical application model: all applications are GUI and only
servers have no user interface

• an event-based application model: all user interaction is captured
as events that are made available to applications through the event
queue

• specific idioms aimed at improving robustness: for example, active
objects manage asynchronous services (in preference, for example,
to explicit multi-threading) and descriptors are used for type-safe and
memory-safe strings

• streams and stores for persistent data storage: the natural ‘document’
model for applications (although conventional file-based application
idioms are supported)

• the class library (the User Library) providing other user services and
access to kernel services.

3.3 Why Architecture Matters

‘Doing architecture’ in a complex commercial context is not easy.
Arguably all commercial contexts are complex (certainly they are all
different), in which case architecture will never be easy. However, the
business model for Symbian OS is particularly complex. While it must
be counted as part of Symbian’s success, it also creates a unique set
of problems to overcome and work around, and to some extent those
problems are then manifested as problems for software architecture.

Architecture serves a concrete purpose; it makes management of the
system easier or more difficult, in particular:



50 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• managing the functional behavior and supported technologies

• managing the size and performance

• retaining the ability to evolve the system.

Elegance, consistency, and transparency were all early design drivers
in the creation of the system. Charles Davies, now Symbian CTO, was
the early architect of the higher layers of the operating system.

Charles Davies:

I remember looking at Windows at that time and thinking that this is all very
well, here is this Windows API, but just look what’s happening underneath it,
it was ugly. I wanted something that you could look inside of.

The early ‘ethic of robustness’, to use his phrase, came straight from
the product vision.

Managing the Bounds of the System

In some ways, the hardest thing of all for Symbian is managing the impact
of its business model on the properties of the system and, in particular,
the problem that Charles Davies calls ‘defining the skin’ – understanding,
maintaining, and managing the bounds of the system under the impact
of the business model. As well as originating the requirements push and
feeding the requirements pipeline, generating almost all of the external
pressure on the system to evolve and grow, licensees and partners also
create their own extensions to the system. (S60, arguably, is the most
extreme example, constituting a complete system in itself, at around twice
the size of the operating system.)

Being clear where to draw the boundary between the responsibilities
of Symbian OS and the responsibilities of GUIs, in terms of who makes
what and where the results fit into the architecture, becomes difficult.
Charles Davies is eloquent on the subject.

Charles Davies:

One of the things I’ve done since being here is to try and identify where
the skin of Symbian OS is, to define the skin. When I was at Psion and we
were building a PDA, I understood where the PDA ended and where the
things outside the PDA began, and so I knew the boundaries of the product.
And then I came to Symbian and Symbian OS, and I thought, where are the
boundaries? It’s really tough to know where the boundaries are, and I still
sometimes wonder if we really know that. That’s debilitating from the point of
view of knowing what to do. In reality we’re trying to fit some kind of rational



WHY ARCHITECTURE MATTERS 51

boundary to our throughput, because you can’t do everything. We’ve got, say,
750 people in software engineering working on Symbian OS, and we can’t
make that 1500 and we don’t want to make that 200. So with 750 people,
what boundary can we draw that matches a decent product?

In one sense the problem is particular to the business model that Sym-
bian has evolved, and is less a question of pure technology management,
which to some extent takes care of itself (or should, with a little help to
balance the sometimes competing needs of different licensees), than of
driving the operating system vision in the absence of a wider product
vision. In that wider sense, the licensees have products; Symbian OS has
technologies and it is harder to say what the source of the technology
vision for the operating system itself should be. To remain at the front
of the field, Symbian OS must lead, but on the whole, customers would
prefer that the operating system simply maps the needs of their own
leading products. The problem is that by the time the customer product
need emerges, the operating system is going to be too late if it cannot
already support it. (At least, in the case of complex technologies and,
increasingly, all new mobile technologies are complex.) Customers there-
fore build their own extensions or license them from elsewhere, and the
operating system potentially fails under the weight of incompatibilities or
missing technologies).

Product companies are easier to manage than technology companies
because it is clear what product needs are; either they align with the
market needs or the product fails in the market. The Symbian model
is harder and forever raises the question of whether Symbian is simply
a supplier or integrator to its customers, or an innovator. Is Symbian a
product company, where the operating system is the product, or does it
merely provide a useful ‘bag of bits’?

Architecture is at the heart of the answer. If there is an architecture to
describe, then there is more to the operating system than the sum of its
parts.

Managing Competitive Threats

There are many external threats to Symbian OS. Some of the threats are
household names. Microsoft is an obvious threat, but the likelihood is that
Microsoft itself will always be unacceptable to some part of the market,
whatever the quality of its technology offering. (It is hard to see Nokia
phones, for example, sharing branding with Microsoft Windows, and the
same issues no doubt apply to some network operators, but clearly not to
all of them.) It is almost as certain that Nokia in turn is unacceptable to
some other parts of the market. S60 aims at building a stable of licensees,
vendors for whom the advantages of adopting a proven, market-ready



52 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

user interface outweigh the possible disadvantages of licensing a solution
from a competitor, or the costs of developing an in-house solution. There
will always be vendors, though, for whom licensing from Nokia is likely
to be unacceptable. Interestingly, the more Microsoft resorts to branding
its own phones, in order to increase market share, the more it competes
with those it is seeking to license to. It is hard to see any scenario in which
the phone market could become as homogeneous as the PC market.

Linux is also a clear and visible threat, even though again there are
natural pockets of resistance. Linux, for example, is viral. Linux does
not just take out competitors, it takes out whole parts of the software
economy, and it is not yet clear what it replaces them with.7 To put
Linux in a phone, for example, seems to require just the same ‘old’
software economy as to put any other operating system into a phone,
dedicated software development divisions which do the same things that
other software development divisions do: write code, miss deadlines, fix
defects, pay salaries. Linux may be royalty-free, but that translates into
‘not-free-at-all’ if you have to bring it inside your own dedicated software
division. Nonetheless, to ignore Linux would be a (possibly fatal) mistake.

Architecture is part of the answer. If Symbian OS is a better solution,
it is because its architecture is more fit for purpose than that of its
competitors, not because its implementation is better. Implementation
is a second-order property, easy to replace or improve. Architecture, in
contrast, is a deep property.

3.4 Symbian OS Layer by Layer

The simplest architectural view of Symbian OS is the layered view given
by the Symbian OS System Model.8

UI Framework Layer
The topmost layer of Symbian OS, the UI Framework layer provides the
frameworks and libraries for constructing a user interface, including the
basic class hierarchies for user interface controls and other frameworks
and utilities used by user interface components.

The UI Framework layer also includes a number of specialist, graphics-
based frameworks which are used by the user interface but which are
also available to applications, including the Animation framework, the
Front End Processor (FEP) base framework and Grid.

The user interface architecture in Symbian OS is based on a core
framework called Uikon and a class hierarchy for user interface controls

7 Where it is clear, it is not clear how to make a profit from what it replaces them with.
8 The System Model (see Chapter 5) is relatively constant across different releases,

although its details evolve to track the evolution of the architecture.



SYMBIAN OS LAYER BY LAYER 53

called the control environment. Together, they provide the framework
which defines basic GUI behavior, which is specialized by a concrete
GUI implementation (for example, S60, UIQ or MOAP), and the inter-
nal plumbing which integrates the GUI with the underlying graphics
architecture.

Uikon was originally created as a refactoring of the Eikon user inter-
face library, which was part of the earliest versions of the operating
system. Uikon was created to support easier user interface customization,
including ‘pluggable’ look-and-feel modules.

The Application Services Layer
The Application Services layer provides support independent of the user
interface for applications on Symbian OS. These services divide into three
broad groupings:

• system-level services used by all applications, for example the Appli-
cation Architecture or Text Handling

• services that support generic types of application and application-like
services, for example personal productivity applications (vCard and
vCal, Alarm Server) and data synchronization services (OMA Data
Sync, for example); also included are a number of key application
engines which are used and extended by licensees (Calendar and
Agenda Model), as well as legacy engines which licensees may
choose to retain (Data Engine)

• services based on more generic but application-centric technologies,
for example mail, messaging and browsing (Messaging Store, MIME
Recognition Framework, HTTP Transport Framework).

Applications in Symbian OS broadly follow the classic object-oriented
Model–Viewer–Controller (MVC) pattern. The framework level support
encapsulates the essential relationships between the main application
classes (representing the application data model, the views onto it, and
the document and document user interface that allow it to be manipulated
and persisted) and abstracts all of the necessary underlying system-level
behavior. In principle, a complete application can be written without any
further direct dependencies (with the exception of the User Library).

The Application Services layer reflects the way that the system as a
whole has evolved. On the one hand, it contains essential application
engines that almost no device can do without (the Contacts Model for
example), as well as a small number of application engines that are
mostly now considered legacy (e.g. the WYSIWYG printing services and
the office application engines, including Sheet Engine, a full spreadsheet
engine more appropriate for PDA-style devices). On the other hand, it
contains (from Symbian OS v9.3) the SIP Framework, which provides the
foundation for the next generation of mobile applications and services.



54 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

Java ME
In some senses, Java does not fit neatly into the layered operating system
model. Symbian’s Java implementation is based around:

• a virtual machine (VM) and layered support for the Java system which
complements it, based on the MIDP 2.0 Profile

• a set of standard MIDP 2.0 Packages

• an implementation of the CLDC 1.1 language, I/O, and utilities
services

• a number of low-level plug-ins which implement the interface
between CLDC, the supported packages, and the native system.

Java support has been included in Symbian OS from the beginning,
but the early Java system was based on pJava and JavaPhone. A standard
system based on Java ME first appeared in Symbian OS v7.0s. Since
Symbian OS v8, the Java VM has been a port of Sun’s CLDC HI.

The OS Services Layer
The OS Services layer is, in effect, the ‘middleware’ layer of Symbian
OS, providing the servers, frameworks, and libraries that extend the bare
system below it into a complete operating system.

The services are divided into four major blocks, by broad functional
area:

• generic operating system services

• communications services

• multimedia and graphics services

• connectivity services.

Together, these provide technology-specific but application-
independent services in the operating system. In particular, the following
servers are found here:

• communications framework: the Comms Root Server and ESock (Sock-
ets) Server provide the foundation for all communications services

• telephony: ETel (Telephony) Server, Fax Server and the principal
servers for all telephony-based services

• networking: the TCP/IPv4/v6 networking stack implementation

• serial communications: the C32 (Serial) Server, providing standard
serial communications support



SYMBIAN OS LAYER BY LAYER 55

• graphics and event handling: the Window Server and Font and Bitmap
Server provide all screen-drawing and font support, as well as system-
and application-event handling

• connectivity: the Software Install Server, Remote File Server and
Secure Backup Socket Server provide the foundation for connectivity
services

• generic: the Task Scheduler provides scheduled task launching.

Among the other important frameworks and libraries found in this layer
is the Multimedia Framework (providing framework support for cameras,
still- and moving-image recording, replay and manipulation, and audio
players) and the C Standard Library, an important support library for
software porting.

The Base Services Layer

The foundational layer of Symbian OS, the Base Services layer provides
the lowest level of user-side services. In particular, the Base Services
layer includes the File Server and the User Library. The microkernel
architecture of Symbian OS places them outside the kernel in user space.
(This is in contrast to monolithic system architectures, such as both Linux
and Microsoft Windows, in which file system services and User Library
equivalents are provided as kernel services.)

Other important system frameworks provided by this layer include
the ECom Plug-in Framework, which implements the standard man-
agement interface used by all Symbian OS framework plug-ins; Store,
which provides the persistence model; the Central Repository, the DBMS
framework; and the Cryptography Library.

The Base Services layer also includes the additional components which
are needed to create a fully functioning base port without requiring any
further high-level services: the Text Window Server and the Text Shell.

The Kernel Services and Hardware Interface Layer

The lowest layer of Symbian OS, the Kernel Services and Hardware Inter-
face layer contains the operating system kernel itself, and the supporting
components which abstract the interfaces to the underlying hardware,
including logical and physical device drivers and ‘variant support’, which
implements pre-packaged support for the standard, supported platforms
(including the Emulator and reference hardware boards).

In releases up to Symbian OS v8, the kernel was the EKA1 (Kernel
Architecture 1) kernel, the original Symbian OS kernel. In Symbian OS v8,
the EKA2 (Kernel Architecture 2) real-time kernel shipped for the first time
as an option. (It was designated Symbian OS v8.1b; Symbian OS v8.1a is



56 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

the Symbian OS v8.1 release with the original kernel architecture.) From
Symbian OS v9, EKA1 no longer ships and all systems are based on the
real-time EKA2 kernel.9

3.5 The Key Design Patterns

Probably the most pervasive architectural pattern in Symbian OS is the
structuring client–server relationship between collaborating parts of the
system. Clients wanting services request them from servers, which own
and share all system resources between their clients.

Another widely used pattern is the use of asynchronous methods in
client–server communications. Together, these two patterns impose their
shape on the system. Like any good architecture, the patterns repeat at
multiple levels of abstraction and in all corners of the system.

A third pervasive pattern is the use of a framework plug-in model to
structure the internal relationships within complex parts of the system,
to enable flexibility and extensibility. Flexibility in this context means
run-time flexibility and is particularly important when resources are
constrained. The ability to load the requested functionality on demand
enables more efficient use of constrained resources (objects which are
not used are not created and loaded). Extensibility is important too in a
broader sense. The use of plug-ins enables the addition of behavior over
a longer timescale without re-architecting or re-engineering the basic
design. An example is the structure of the telephony system which encap-
sulates generic phone concepts which are then extended, for example
for GSM- or CDMA-specific behaviors, by extension frameworks. The
use of plug-ins also enables licensees to limit or extend functionality by
removing or replacing plug-in implementations.

At a lower level, Symbian OS makes much use of specific, local
idioms. For example, active objects are the design idiom which makes
asynchronicity easy and are widely used. (‘Asynchronicity’ here means the
ability to issue a service request without having to wait for the result before
the thread of execution can continue.) Encapsulating asynchronicity into
active objects is an elegant object-oriented design. (Active objects are
examples of cooperative multitasking: multiple active objects execute in
effect within the context of a single thread. Explicit multithreading is an
example of non-cooperative multitasking, that allows pre-emption.)

Symbian OS has also evolved a number of implementation patterns,
including ‘leaving’ functions and the cleanup stack, descriptors for safe
strings, local class and member naming conventions and the use of
manifest constants for some basic types.

9 This history is described in detail in [Sales 2005], the in-depth, authoritative reference.



THE KEY DESIGN PATTERNS 57

Symbian’s microkernel design dates back to its original conception,
but becomes even more significant in the context of the new real-time
kernel architecture. The real-time architecture is essential for a system
implementing a telephony stack, which depends on critical timing issues,
and is also becoming increasingly important for fast, complex multi-
media functionality. Together, phone and multimedia are arguably the
most fundamental drivers for any contemporary operating system. As
mobile phones, in particular, reach new levels of multimedia capabil-
ity, to become fully functional converged multimedia devices (supporting
streamed and broadcast images and sound, e.g. music streaming, two-way
streaming for video phone conferencing and interactive broadcast TV),
achieving true real-time performance has become an essential require-
ment for a phone operating system. The real-time kernel allows Symbian
OS to meet that requirement, making it a suitable candidate for directly
hosting a 3G telephony stack.

The real-time kernel architecture also introduces important changes
(in particular to mechanisms such as interprocess communication) to
support the new platform security model introduced from Symbian OS
v9. (Strictly speaking, the security model is present in Symbian OS v8 but
implements a null policy. The full security model, which depends on the
new kernel architecture, is present from Symbian OS v9.)

The Client–Server Model

In Symbian OS, all system resources are managed by servers. The kernel
itself is a server whose task is to manage the lowest level machine
resources, CPU cycles and memory.

From the kernel up, this pattern is ubiquitous. For example, the display
is a resource managed by the Window Server; display fonts and bitmaps
are managed by the Font and Bitmap Server; the data communications
hardware is managed by the Serial Server; the telephony stack and
associated hardware by the Telephony Server; and so on all the way to
the user-interface level, where the generic Uikon server (as specialized
by the production GUI running on the final system) manages the GUI
abstractions on behalf of application clients.

Threads and Processes

The client–server model interacts with the process and threading model
in Symbian OS. While this is in keeping with a full object-oriented
approach, which objectifies machine resources in order to make them
the fundamental objects in the system, it can also cause confusion.

In Symbian OS, threads and processes are defined in [Sales 2005,
Chapter 3] as follows:



58 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• threads are the units of execution which the kernel scheduler sched-
ules and runs

• processes are collections of at least one but possibly multiple threads
which share the same memory address space (that is, an address
mapping of virtual to physical memory).

Processes in other words are units of memory protection. In particular
each process has its own heap, which is shared by all threads within the
process. (Each thread has its own stack.)

A process is created as an instantiation of an executable image file
(of type EXE in Symbian OS) and contains one thread. Creation of
additional threads is under programmer control. Other executable code
(for example, dynamically loaded code from a DLL file) is normally
loaded into a dynamic-code segment attached to an existing process.
Loading a DLL thus attaches dynamic code to the process context of the
executing thread that invokes it.

Each server typically runs in its own process,10 and its clients run in
their own separate processes. Clients communicate with the server across
the process boundary using the standard client–server conventions for
interprocess communication (IPC).11

As Peter Jackson comments, Symbian OS falls somewhere between
conventional operating system models in its thread and process model.

Peter Jackson:

Most of the threads versus processes issues are to do with overhead. In some
operating systems, processes are fairly lightweight, so it’s very easy to spawn
another process to do some function and return data into a common pool
somewhere. Where the process model is more heavyweight and the overhead
of spawning another one is too great, then you invent threads and you let
them inherit the rest of the process, so the thread is basically just a way of
scheduling CPU activity. In Symbian OS, you can use whichever mechanism
is appropriate to the requirements.

Server-Side and Client-Side Operations

Typically a server is built as an EXE executable that implements the
server-side classes and a client-side DLL that implements the client-side
interface to the server. When a client (either an application or another

10 There are some exceptions for reasons of raw speed.
11 [Sales 2005] defines the Symbian OS client–server model as inter-thread communi-

cation (ITC), which is strictly more accurate than referring to interprocess communication
(IPC). However, arguably the significance of client–server communications is the crossing
of the process boundary.



THE KEY DESIGN PATTERNS 59

system service) requests the service, the client-side DLL is attached to
the calling process and the server-side executable is loaded into a new
dedicated process (if it is not already running).

Servers are thus protected from their clients, so that a misbehaving
client cannot cause the server to fail. (The server and client memory
spaces are quite separate.) A server has responsibility for cleaning up after
a misbehaving client, to ensure that resource handles are not orphaned if
the client fails.

At the heart of the client–server pattern therefore is the IPC mechanism
and protocol, based on message passing, which allows the client in its
process, running the client-side DLL, to communicate via a session
with the server process. The base classes from which servers and their
client-side interfaces are derived encapsulate the IPC mechanisms.

The general principles are as follows:12

• The client-side implementation, running in the client process, man-
ages all the communications across the process boundary (in the
typical case) with the server-side implementation running in the
server process.

• The calling client connects to the client-side implementation and
creates a session, implemented as a communications channel and
protocol created by the kernel on behalf of the server and client.

• Client sessions are typically created by calling Connect() and
are closed using Close() methods, in the client-side API. The
client-side calls invoke the standard client–server protocol meth-
ods, for example RSessionBase::CreateSession() and RPro-
cess::Create(). On a running server, this results in the client
session being created; if the server is not already running, it causes
the server to be started and the session to be created.

• The client typically invokes subsessions that encapsulate the detailed
requests of the server-defined protocol. (In effect, each client–server
message can be thought of as creating a subsession.)

• Typically, client-side implementations derive from RSessionBase,
used to create sessions and send messages.

• Typically, the server side derives from CServer.

Servers are fundamental to the design of Symbian OS, and are (as the
mantra has it) the essential mechanism for serializing access to shared
resources, including physical hardware, so that they can be shared by
multiple clients.

12 The best description is [Stichbury 2005, Chapter 12].



60 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

Andrew Thoelke:

It’s not so much that there is a server layer in the operating system as a
hierarchy. It’s very much a hierarchy and there are a lot of shared services.
Some of them are shared by quite a few components and some of them really
support just a very small part of the system, and of course those shared services
may build on top of one or more client–server systems already.

Client–server is a deep pattern that is used as a structuring principle
throughout the system.

Asynchronous Services
Another deep pattern in the system is the design of services to be
asynchronous.

System responsiveness in a multitasking system (the impression that
applications respond instantly and switch instantly) depends on asyn-
chronous behavior; applications don’t wait to finish processing one
action before they are able to handle another.

The alternatives are blocking, or polling, or a combination of both.
In a blocking request (the classic Unix pattern), the calling program
makes a system call and waits for the call to return before continuing its
processing. Polling executes a tight loop in which the caller checks to see
if the event it wants is available and handles it when it is. (Polling is used
by MS-DOS, for example, to fetch keystrokes from the keyboard.)

Blocking is unsatisfactory because it blocks others from accessing the
system call which is being waited on, while it is waiting. Polling is
unsatisfactory because code which is functionally idle, waiting for an
event, is in reality not idle at all, but continuously executing its tight
polling loop.

Blocking reduces responsiveness. Polling wastes clock cycles, which
on a small system translates directly to power consumption and battery
life.

Charles Davies:

Asynchronous services was driven by battery life. We were totally focused on
that. For example on one of the Psion devices, we stopped the processor clock
when it was idle. I don’t know if that was innovative at the time. We certainly
didn’t copy it from anybody else, but we had a static processor. Usually in an
idle process, the operating system is doing an idle loop. But we didn’t do that,
we stopped the clock on the processor and we turned the screen off, and that
was fundamental to the design.

Typically, client–server interactions are asynchronous.



THE KEY DESIGN PATTERNS 61

The Plug-in Framework Model
A final high-level design pattern, the plug-in framework model is used
pervasively in Symbian OS, at all levels of the system from the UI
Framework at the top to the lowest levels of hardware abstraction at the
bottom.

A framework (as its name suggests) is an enclosing structure. A plug-in
is an independent component that fits into the framework. The framework
has no dependency on the plug-in, which implements an interface defined
by the framework; the plug-in has a direct, but dynamic, dependency on
the framework.

Frameworks are one of the earliest design patterns (going back to the
time before design patterns were called design patterns, in fact) [Johnson
1998]. While, in principle, nothing limits them to object-oriented design,
they lend themselves so naturally to object-oriented style that the two are
strongly identified. A key principle of good design (again, not limited to
object-oriented design but closely identified with it) is the separation of
interface from implementation. On a small scale, this is what designing
with classes achieves: a class abstracts an interface and its expected
behavior and encapsulates its implementation. Frameworks provide a
mechanism for this kind of abstraction and encapsulation at a higher level.
As is often said, frameworks enable a complete design to be abstracted
and reused.13 Frameworks are therefore a profound and powerful way of
constructing an object-oriented system.

In detail, a framework in Symbian OS defines an external interface to
some part of the system (a complete and bounded logical or functional
part) and an internal plug-in interface to which implementers of the
framework functionality (the plug-ins) conform. In effect, the framework
is a layer between a calling client and an implementation. In the extreme
case, a ‘thin’ framework does little more than translate between the two
interfaces and provide the mechanism for the framework to find and load
its plug-ins. A ‘thicker’ framework may do much more, providing plug-in
interfaces which are highly abstracted from the external visible client
interface. Symbian OS contains frameworks at both extremes and most
points in between.

Because in Symbian OS a framework exposes an external interface
to a complete, logical piece of the system, most frameworks are also
implemented as servers.

As well as providing interface abstraction and separation from imple-
mentation, and flexibility through decoupling, frameworks also provide a
natural model for functional extension. This approach is used for example
by the telephony-server framework to provide an open-ended design. The
core framework supports generic telephony functionality based around
a small number of generic concepts. Framework extensions implement

13 A framework is ‘reusable design’ as [Johnson 1998] puts it.



62 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

the specialized behaviors which differentiate landline from mobile tele-
phony, data from voice, circuit- from packet-switched, GSM from CDMA,
and so on.

As well as this ‘horizontal’ extension of the range of functionality
of the framework, such a plug-in also defines the interfaces which
are implemented ‘vertically’ by further plug-ins that provide the actual
services.

Because the plug-in framework model is pervasive, Symbian OS pro-
vides a plug-in interface framework. (Available since Symbian OS v7.0s
but universally enforced since Symbian OS v8.0 as part of the phased
introduction of Platform Security.) The plug-in framework (also known as
ECom) standardizes the mechanisms and protocols that allow frameworks
to locate and load the plug-ins which provide their implementations, and
for plug-ins to register their presence and availability in the system as
implementation modules.

Clearly, plug-ins pose a potential security threat because they provide
a mechanism for untrusted (that is, externally supplied) code to be
loaded into the processes of some system components (although the
microkernel architecture keeps them well away from the kernel). The
plug-in framework therefore enforces the security model on plug-ins
before they are loaded [Heath 2006].

Another area in which plug-ins pose potential risks to the system is in
performance. Potentially, a badly designed or poorly implemented plug-in
can damage the performance of the framework that loads it. The plug-in
model can also make it hard to understand the dynamic behavior of
the operating system and, in particular, can make system-level debugging
tricky, since the system can become (from the perspective of the debugger)
highly indeterministic, unpredictable and unreproduceable.

However, enabling a pervasive model of run-time rather than static
loading can boost system performance. Plug-ins are loaded on request;
if they are not requested, they are not loaded, saving loading time
and system resources (including RAM, on systems that do not provide
execute-in-place).

An interesting example of just how pervasive the plug-in framework
pattern is in Symbian OS is the original implementation of applications
as plug-ins to the application and UI Framework rather than as more con-
ventional executables. (This architecture changes somewhat in Symbian
OS v9, where applications are implemented as EXEs rather than DLLs,
while retaining other characteristics of plug-ins.)

In implementation terms, an ECom plug-in is implemented as a poly-
morphic DLL and a resource (RSC) file. The DLL entry point is a factory
function that instantiates the plug-in object. All system plug-ins are stored
into well-known locations, as required by the security model.

The plug-in framework provides a standard and universal mechanism
for binding implementations (plug-ins) to interfaces (frameworks) at run



THE KEY DESIGN PATTERNS 63

time, together with the mechanisms for packaging multiple interface imple-
mentations into a single DLL (that is, loading multiple implementations
at once, to improve performance), plug-in registration and implemen-
tation versioning, discovery and loading including boot-time discovery
optimizations to avoid run-time overhead, and cleanup after unloading
plug-ins. (A plug-in instance cannot destroy itself, because its destructor
code would be part of the code being removed from memory.) The frame-
work also provides security-policy definition and policing mechanisms.

The plug-in framework is implemented as a server, in effect a broker
between frameworks and conforming plug-ins, managing those plug-ins
as a resource to its framework clients.

Microkernel Architecture
Symbian OS has a microkernel architecture, which sets it apart from
operating systems such as Microsoft Windows and Linux.14 In Symbian
OS, core services that would be inside the kernel in a monolithic oper-
ating system are moved outside. The pervasive use of the client–server
architecture, and the protection of system code from clients which fol-
lows from it, guarantees both the robustness and high availability of these
services. The goal is a robust system that is also responsive and extensible;
experience suggests that the design achieves it.

Andrew Thoelke:

The actual client–server architecture, the division into processes across the
operating system and the boundary of the kernel, means that the actual
privileged mode software is much smaller than in desktop operating systems.
It’s very nearly theoretical microkernel, but not completely truly microkernel
because device drivers all run kernel side, and a true microkernel would say
that device drivers should run user side, and who knows maybe we’ll get there
in a few years time. But all file system services, all higher level comms services
including networking, and the windowing software for example, all run user
side.

If anything the new EKA2 kernel architecture goes beyond the micro-
kernel design and encapsulates the most fundamental kernel primitives
within a true real-time nanokernel, supporting an extended kernel that
implements the remaining Symbian OS kernel abstractions, but is equally

14 There are microkernel implementations of Unix, based on the Mach microkernel.
Mac OS X is an example; it is built as a Berkeley Unix variant with a Mach microkernel
and proprietary user interface layer. Other microkernel designs include QNX, which is an
operating system similar to Unix, but not Unix; Chorus, which is not just a microkernel but
also object-oriented and which, like Mach, is capable of hosting Unix; and iTron, which is
an important mobile-phone operating system in Japan.



64 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

capable of supporting ‘personality’ layers to mimic the interface of any
other operating system. But the essential elegance of the Symbian OS
kernel design goes right back to its earliest days.

Martin Tasker:

The Symbian model is that you’re either a user thread or a kernel thread,
and if you’re a user thread then either you’re an application thread, which
has a session with the window server and interacts with the user, or you’re a
server thread which has no interaction with the user. And if you’re a server
thread, well then you sit around waiting for client requests to happen and
when they do you service them, and in fact the kernel has a server and it does
just that. There are a couple of kernel calls which are handled by something
known as fast execs, which don’t involve the kernel server. But the design
philosophy of the kernel is to make those things very short and sweet and to
put most of the work into the server. I think that’s a cool architecture. Some
of it goes down to Colly Myers’s explainability requirement, that it takes more
than an average programmer to implement any of this stuff, but any average
programmer should be able to use it.

The lineage of course can be traced back to the precursor Psion
systems.

Andrew Thoelke:

It owes its design very much to the heritage of Series 3. Colly Myers took that
same OS structure, that you’ve got a small amount of protected mode software
that can do everything, and that even all the file system and file services
actually operate in a separate process from that and have less privileges, and
that you have a very tightly integrated client–server architecture that actually
binds everything together. That is definitely quite different to what you see in
a lot of other systems.

Notwithstanding the move to the EKA2 kernel architecture, at a high
level the lineage is still visibly present.

Martin Tasker:

The change from EKA1 to EKA2 is a hugely significant change. But at the
system-design level, you know that change hasn’t actually radically altered the
system design at all. It’s still either application processes or server processes,
and that design was actually pioneered all the way back in SIBO, and it hasn’t
changed much since then, and the reason is: it’s a proven design.



THE APPLICATION PERSPECTIVE 65

3.6 The Application Perspective

Symbian OS has been designed above all to be an application platform
(although it might be argued that that has begun to change, and that in the
latest devices it has become primarily an engine for driving fast, mobile
data communications). Applications have always been an essential part
of the system. The early operating system shipped with a complete set
of productivity and communications applications targeting connected
PDAs. Although Symbian OS no longer supplies a GUI and user-ready
applications but only common application engines, Symbian OS phones
now ship with more built-in applications than ever before, supplied
either with the licensee GUI or as extras provided by the phone vendor
or network operator.

Charles Davies:

Symbian started off as an operating system plus an application suite. We never
designed it as an operating system independently of the suite of applications.

Just as importantly, both S60 and UIQ are also explicitly pitched as
open platforms for third-party applications and provide extensive support
for developers including freely available SDKs, support forums and tools.

From the beginning the approach to applications has been graphics-
based. Like much else, the approach has evolved and, in particular, it has
evolved as Symbian’s user interface strategy has evolved. However, the
principles of application structure have been essentially mature since the
first release of S60 and UIQ in 2002.

Uikon is the topmost layer of Symbian OS. It provides the framework
support on which a production user interface is built. The three currently
available custom user interfaces are S60, UIQ and MOAP, but there is no
engineering reason why any licensee should not build its own bespoke
user interface, which indeed is precisely the origin of S60 and MOAP.
Uikon abstracts application and control base classes in the Application
Architecture and Control Environment class hierarchies to create generic
GUI application classes (that is, classes free of a look and feel policy)
which are customized by the custom user interface. The custom user
interface abstracts the Uikon policy-free base classes to provide the
policy-rich classes that applications derive from.

Uikon thus integrates the underlying support of the Application Archi-
tecture and the Control Environment to create a framework from which
(as abstracted by the custom user interface), applications derive. Uikon is
a framework and applications behave recognizably as plug-ins. Uikon is
implemented as a server.



66 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

The Structure of an Application
Every application is built from three basic classes:15

• an application class, derived from the Application Architecture (CApa-
Application)

• a document class, derived from the Application Architecture (CEik-
Document)

• an application user interface class, derived from the Control Environ-
ment (CCoeAppUiBase).

These classes provide the fundamental application behavior. However,
two important parts of the application are missing from this structure: the
application view, which is the screen canvas the application uses to
display its content, and the application data model and data interface
implementations, which encapsulate the application ‘engine’.

The classic application structure expects that the data model (the
data-oriented application functionality) exists independently of the GUI
implementation of the application and is, therefore, independent of any
user interface classes. It is hooked into the user interface by a member
pointer (iModel) in the document class. The classes specific to the user
interface then interact with it purely through the APIs it exposes.16

Charles Davies:

We always had that structuring of applications, the idea of separating
the UI from the application engine. That was an early design principle
and it was the design guidance for application writers. We knew about
Model–View–Controller, and we thought of an application engine as a
model, and our design guidance was to keep the application logic separate
from the UI. Not because we anticipated at that time multiple UI flavors,
but because we recognized something more fundamental in terms of writing
an application. That you might write an application and decide to improve
the design of the UI, where the refinement of the UI was just pragmatic, the
basic functional application logic stayed the same. So if you could separate
those two things, that was good, and that led to the terminology of application
engines.

15 This is the ‘classic’ application structure, with roots in the Eikon applications of Psion
Series 5. Both UIQ and S60 extend the design patterns for applications. See [Edwards 2004,
p. 184] for discussions of the ‘dialog-based’ and ‘view-switching’ S60 application structure.
UIQ applications also extend the basic pattern with custom view classes.

16 This is in fact a very powerful design principle, implying, for example, that the
data model can run without a direct user interface at all. Engines designed this way are
independently testable and intrinsically highly portable between different user interfaces.
The principle runs deep in the Symbian ethos, as witnessed by the presence of engines
independent of the user interface in the operating system itself.



THE APPLICATION PERSPECTIVE 67

In Symbian OS, a control is a drawable screen region (in other words,
the owner of screen real estate). The Application view class is derived
directly from the Control Environment control base classes.

On small devices, where screen real estate is scarce, desktop-style
windowing is not appropriate. A more natural approach for small displays
is to switch whole-screen views, for example switching between a list-
style view of contact names and a record-style view of the details of
a single contact. Applications therefore typically define a hierarchy of
views, with the main application view at the root.

Because Symbian OS is multitasking, multiple applications can be
running at once, even though only one (the foreground application) will
be presenting its view on the display. Both S60 and UIQ support switching
directly between views in different applications, including launching the
view of a new application inside the context of the current one (for
example selecting a phone number from within a Contact entry and
immediately switching to the phone application and dialing the number).

Symbian’s application structure makes much of the detail of the appli-
cation user interface programmable solely via resource files. Resource
files are compiled separately as part of the application build process
and linked into the built application, providing a natural mechanism
for language localization (all text strings used within an application can
be isolated in resource files and recompiled to a new language without
having to recompile the application). Resource files are also compressed.

Charles Davies:

We lived in tougher times as far as Moore’s law was concerned in those days.
Resource files were around in contemporary GUI systems at that time. But
from the beginning we did Huffman compression on resource files, and we
were careful about the amount of information we put in them.

Uikon
The most striking fact about Symbian OS at the user interface level is
its support for a replaceable user interface, and indeed the fact that it
ships without a native user interface at all. (User-interface-dependent
components are shipped only with a TechView test user interface.)

While it seems fair to say that Symbian did not get its user interface
strategy right first time (in particular, the Device Family Reference Design
(DFRD) strategy looks, with hindsight, to have been naı̈ve), nonetheless
the operating system has been able to support multiple licensees, each
having a distinct user-interface philosophy, occupying different positions
in the market and spanning diverse geographical locations. Those differ-
ences are encapsulated in the differences between the user interfaces that
have evolved for Symbian OS.



68 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

S60 builds on the classic Nokia user interface to provide a simple,
key-driven but graphically rich and arresting user interface. In contrast,
UIQ is firmly pen-based and targets high-end phones with rich PDA-like
functionality including pen-based handwriting recognition. MOAP aims
squarely at its solely Japanese market, providing a graphically busy user
interface featuring Kanji as well as Roman text and animated cartoon-style
icons.

File System or ‘Object Soup’ Storage Model

FAT is the ‘quick and dirty’ file system that MS-DOS made famous. When
work on EPOC started, the Apple Newton was a leading example of a
different way to approach consumer computing (different, for example,
from the MS-DOS-based Hewlett Packard machines which were the
leading competitor for Psion’s Series 3). Instead of a conventional file
system the Newton employed an ‘object soup’ storage model.17

On any useful system, data requires a lifetime beyond that of the
immediate context in which it is created, whether that means storing
system settings, saving the memo you have just written to a file, or storing
the contact details you have just updated.

Charles Davies:

We had a normal file system on the Series 3. When we went to C++, we talked
a lot about persistent models of object-oriented programming, and we went
for stream storage. We narrowly rejected SQL in favor of stream storage. I
remember the design ideas around at the time, and it was done in the interests
of efficiency. Different applications were having to save the same system
objects and we were having to duplicate that code. So for something like page
margins, which was a system structure, if that object knew how to serialize
itself, that would solve the problem. You do that by having serialization within
the object, so objects that might reasonably want to be persisted could persist
themselves. And that was in the air, I mean Newton had its soup at that
time which I think was object-oriented, and there was a belief at that time
that object-oriented databases were it, and that objects ought to be seen as
something that existed beyond the lifetimes of processes.

Objects, in other words, can be viewed as more than just the run-
time realizations of object-oriented code constructs. However, in terms
of the standards of the day, approaches based on something other
than a file system were certainly the exception. The big challenge in
maintaining data is that of data format and compatibility, ensuring that
the data remains accessible. Any device which aims to be interoperable

17 ‘Object soup’ is described in [Hildebrand 1994].



THE APPLICATION PERSPECTIVE 69

(in any sense) with other devices faces a similar challenge. In both
cases, the design is immediately constrained in how far it can deviate
from the data-format conventions of the day. For EPOC at that time,
compatibility with desktop PCs was an essential requirement. For Symbian
OS now, the requirement is more generalized to compatibility with other
devices of all kinds. Probably the most important test case for both is
readability of removable media file systems. (All other cases in which a
Symbian OS device interoperates with another device can be managed by
supporting communications protocols and standard data formats, which
are independent of the underlying storage implementation.)

While external compatibility does not determine internal data formats,
the need to support FAT on removable cards probably tipped the balance
towards an internal FAT filing system. One (possibly apocryphal) story has
it that the decision to go with FAT was a Monday morning fait accompli
after Colly Myers had spent a weekend implementing it.

Peter Jackson:

There were periods when we explored all sorts of quite radical ideas but in
the end we always came back to something fairly conservative, because if you
take risks in more than one dimension at a time it doesn’t work. So I spent
quite a lot of time at one stage investigating an object-oriented filing system.
But one day I think Colly Myers had a sudden realization and he just said,
’Let’s do FAT’, and he was probably right.

But FAT is not the whole story. In fact, Symbian OS layers a true object-
oriented persistence model on top of the underlying FAT file system. As
well as a POSIX-style interface to FAT, the operating system also provides
an alternative streaming model.

It is an interesting fact that data formats, whether those of MS-Word
or Lotus 1-2-3 or MS-Excel, have proved to be powerful weapons in the
marketplace, in some cases almost more so than the applications which
originated them. (The Lotus 1-2-3 data format lives on long after the
demise of the program and, indeed, of the company.) Data in this sense is
more important than the applications or even the operating systems with
which it is created.

Peter Jackson:

The layout of the file is an example of a binary interface and, as software
evolves, typically those layouts change, sometimes in quite an unstructured
or unexpected way, because people don’t think of them as being a binary
interface that you have to protect. So the alternative way of looking at things is
to say you don’t think about that, you ignore the layout of the file. What you



70 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

do is you look at the APIs, and you program all your file manipulation stuff to
use the same engines that originated the data in the first place.

In effect, this is the approach that Symbian adopted. But it has a cost.

Charles Davies:

We went for an architecture in which applications lost control of their persistent
data formats, and in retrospect I think that was a mistake, because data lasts
longer than applications. The persistence model is based on the in-memory
aggregation in the heap of whatever data structure you’re working with. For
example, if it’s a Contacts entry, then it consists of elements and you stream
the elements. One problem is that if you try to debug it and you’re looking at
a file dump, its unfathomable. It’s binary, it’s compressed, so it’s very efficient
in the sense that when you invent a class it knows how to stream itself, so it’s a
sort of self-organizing persistence model, but the data dump is unfathomable.
The second problem is that when you change your classes it changes how
they serialize. So it works. But if you add a member function which needs to
be persisted, then you change the data format. You lose data independence,
and that stops complementers from working with your formats too. So we
sacrificed data independence. And because that data has to carry forward for
different versions of the operating system, you get stuck with that data format
and you end up with a data migration problem. So I think that was a mistake.
It would have been worth it to define data-independent formats. In my view
that’s what XML has proved, the XML movement has shown that data sticks
longer than code.

In some ways, implementing a persistence model on top of a FAT
system leads to the worst of both worlds, on the one hand missing out
on the benefits of MS-DOS-style data independence, and on the other
missing out on Newton-style simplicity.

Peter Jackson:

If you implement your permanent store structure in terms of a database design
then you have all the advantages of being able to use database schema idioms
to talk about what you’re doing, and it turns out that those idioms now are
fairly stable and universal. So I think there are examples where we have pruned
away the databaseness of an application because we thought our customers
didn’t really want a database – but that may be a bad thing if one day our
customers decide they want more than just flat data.



SYMBIAN OS IDIOMS 71

Store and DBMS

The native persistence model is provided by Store, which defines Stream
and Store abstractions. Together they provide a simple and fully object-
oriented mechanism for persistence:

• A Stream is an abstract interface that defines Externalize() and
Internalize() methods for converting to and from internal and
external data representations, including encrypted formats.

• A Store is an abstract interface that defines Store() and Restore()
methods for persisting structured collections of streams, which repre-
sent whole documents. Store also defines a dictionary interface which
allows streams to be located inside a store.

Symbian OS also includes DBMS, a generic relational database API lay-
ered on top of Store, as well as implementations including a lightweight,
single-client version (for example, for use by a single application that
wants a database-style data model which will not be shared with others).
Databases are stored physically as files (single client databases may also
be stored in streams).

Database queries are supported either through an SQL subset or
a native API. Since the introduction of platform security, the DBMS
implementation supports an access-policy mechanism to protect database
contents.

3.7 Symbian OS Idioms

C++ is the native language of Symbian OS. Symbian’s native APIs
therefore are C++ APIs (although API bindings exist for other languages:
OPL, Java and, most recently, Python). C++ is a complex, large and
powerful language. The way C++ is used in Symbian OS is often criticized
for being non-standard. For example, the Standard Template Library (STL)
is not supported, the Standard Library implementation is incomplete, and
POSIX semantics are only partly supported. Since Symbian OS competes
with systems which do support standard C++, there is also little doubt
that the operating system will evolve towards supporting more standard
C++. But, like it or not, true native programming in C++ on Symbian OS
requires understanding and using its native C++ idioms.

Among some developers inside the company the view has been
unashamedly one of, ‘Those who can, will; those who can’t should
use Java, Python, or even OPL’.18 While that may not make for mass
market appeal for Symbian C++ itself, the fact is that programming on

18 For example, see the remarks by David Wood in Chapter 18.



72 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

any platform requires specialist expertise as well as general expertise,
and, in that, Symbian OS is no different. The skill level required is
commensurate with the programming problem. It is far from easy to write
software for consumer devices on which software failures, glitches, freezes
and crashes – things people put up with regularly on their PCs – are
simply not an option. Mobility, footprint, battery power, the different user
expectations, screen size, key size and all the other specifics of their small
form factors make mobile devices not at all like desktop ones; phones,
cameras, music players and other consumer devices are different.

Symbian OS idioms are not casual idiosyncrasies; they are deliberate
constraints on the C++ language devised to constrain developer choices,
consequences of the market the operating system targets, and of the
embedded-systems nature of ROM-based devices. Strictly speaking, they
are less architectural than implementational but, in terms of the overall
design, they are important and they have an important place in the
history of the evolution of the system. Understanding them is essential to
understanding what is different about Symbian OS, and what is different
about mobile devices. There are some large-scale differences.

• Lack of a native user interface means that the development experience
is significantly different for device creation developers using the
TechView test user interface than for developers later in the product
lifecycle using S60, UIQ or MOAP.

• The build system is designed for embedded-style cross-compilation,
which is a different experience from desktop development.

• Idioms have evolved to support the use of re-entrant, ROM-based
DLLs, for example disallowing global static data.

• Other optimizations for memory-constrained, ROM-based systems
result in some specific DLL idioms (link by ordinal not name, for
example).

There are what might be described as language-motivated idioms:

• descriptors

• leaving functions

• the cleanup stack

• two-phase construction.

And there are some design-choice idioms:

• active objects and the process and threading model

• UIDs



SYMBIAN OS IDIOMS 73

• static libraries and object-oriented encapsulation

• resource files to isolate locale-specific data, for example, text strings.

Active Objects
Active objects are an abstraction of asynchronous requests and are
designed to provide a transparent and simple multitasking model.

An active object is an event handler which implements the abstract
interface defined by the CActive class and consists of request and
cancellation methods, which request (or cancel) the service the object
should handle, and a Run() method which implements the actual event
handling. When the requested service completes and there is a result to
be handled, a local active scheduler invokes the active object’s Run()
method to handle the completed event.

An active scheduler is created by the UI Framework for each appli-
cation. All active objects invoked by an application (but only that
application’s active objects) share a single thread, in which they are not
pre-empted (i.e. they are scheduled in priority order by the scheduler).

Active objects are a pervasive Symbian idiom and provide a non-
pre-emptive multitasking alternative to explicitly creating multithreaded
programs (although that option remains available to developers), as a
solution to the problem of managing multiple paths of execution within
a program, in the context of an event-based, reactive application model.
From the perspective of a GUI application developer they offer a much
easier solution than multithreading, in effect handing off the awkward
details to the system.

Charles Davies:

Our model for events was very much asynchronous events and signals and
requests. So what we had first of all, and it’s what other systems have too,
is that you make one or more requests for events, and events include timers
and serial events and all kind of events that can come out of anywhere, not
just user-originated events. So you just set off a large number of events and
then you wait for any one of them to come through. So things need to be
able to respond to events from multiple sources. Now Windows had a way
of handling this. There’s a Windows API, though it’s not very elegant. The
problem is, it’s tied to the GUI programming model. In Windows you have
to run up the whole GUI to get the event model going, and we thought that
was a real weakness in mobile devices. We thought that servers needed this as
well, that servers sit there waiting for events from multiple sources, events like
‘my client has died’, which comes from a different source than the message
channel saying ‘here’s the next request from the client’.

The event-driven model is essentially a state-machine model. But,
except within niche areas such as communications programming, these



74 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

were not widely used patterns, especially for applications programming.
And except for those familiar with Windows at the time, or with other
GUI systems such as Amiga and Macintosh, the event-driven application
model was not widely or well understood.

Charles Davies:

When I was interviewing people I used an example of a terminal emulation
program. Here is a program that indisputably gets events not just from the
user. The normal, naı̈ve way of writing an interactive application at that time
would be to wait for a keypress, see what keypress it was, and respond to it;
was it a function key, was it any other key? You’d have some horrible case
statement responding to a keypress. So I would ask, ‘How would you write an
application where you don’t know whether your next input is coming through
the serial port or from the keypress?’ And if they had a good answer to it they
got hired, and if they didn’t, they didn’t.

Well we started off programming it the way that anybody would program
it, you make asynchronous requests on whatever event sources you want to
respond to. There are many pitfalls in doing that, for example if you don’t
consume that event in the right way. You end up with an event loop that’s quite
messy, and it’s pages long, and people were making mistakes. Every event
loop was buggy, and horrible bugs too, so we said ‘Let’s make it modular.’

Martin Tasker had the benefit of a background of programming IBM
mainframes:

Martin Tasker:

I’ve written plenty of event-handling loops, in communications programs
or command handlers where by definition you don’t know what’s going to
happen next. Every time I wrote one of these loops I remember thinking, ‘Have
I got this right?’ Dry running through every possibility, you used to have to tell
people coming on to the team, ‘No, if you handle your loop that way you’re
either going to double-handle some event or fail to handle some event, or
you’re not going to handle event number 2 if event number 2 happens while
you’re handling event number 1, or you’re not actually going to handle event
number 2 until event number 3 comes along. . .’ These are all mistakes that
everybody makes when they’re writing event-handling programs. Over the
lifetime of a program you tend to add in more and more events, or you remove
them, and you change things around. And in those circumstances, when you’re
modifying existing code, it’s tremendously difficult to get event-handling loops
right.

Active objects were devised explicitly to solve such problems, by
creating an easy-to-understand and easy-to-use mechanism for firing



SYMBIAN OS IDIOMS 75

off event handlers asynchronously, deliberately breaking the dependen-
cies between events which are implied by the big, single-block switch
statement which is the typical implementation. More generically, active
objects enable multitasking within applications without the use of explicit
multithreading.

Charles Davies:

We could have done it with threads and created a multithreaded UI, which
by the way is what Java does. But the bad thing about threads is that you
can pre-empt at any time, and then you’ve got to protect the data, because
you have no idea when you’re processing one thread what state the data is
in. The solution was active objects, for any program that responded to events
from multiple sources. So it came about because people were getting it wrong,
because the old way was so complicated. So what are active objects? They’re
really non-pre-emptive multitasking within an application. And that is a very
strong pattern. But it is also something that throws people, because it wasn’t
copied. It was invented here, and it’s widely used, and it has been useful, but
it is a particular strength of Symbian OS.

Active objects are used widely throughout the operating system, as
well as providing a ready-made mechanism for developers creating native
Symbian OS applications.

Martin Tasker:

Colly Myers was right, active objects are a fantastic solution. For people who
know they are dealing with event-handling programs, they are an absolute joy.
And the whole single-threaded nature of an application process is also great
for programmers. In an event-handling system, active objects are a natural
way of handling things, and they are easier for programmers to work with than
pretty much all of the alternatives.

Cleanup, Leaving and Two-Phase Construction
The native Symbian OS error-recovery model evolved explicitly to handle
the kinds of errors that should be expected on resource-constrained and
mobile devices: low-memory situations, low-power situations, sudden
loss of power, loss of connectivity or intermittent connectivity, and even
the sudden loss of a file system, for example when a removable media
card is physically removed from the device without unmounting. These
are all likely or even daily occurrences in the mobile phone context,
causing errors from which the system must recover gracefully. In contrast,
for a large system these may be rare enough occurrences for system
failure with an ‘unrecoverable error’ message to be acceptable.



76 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

The Symbian OS model is proven, playing a large part in the unrivaled
robustness of the system, and going back to the earliest days of the
operating system, and indeed to Psion systems before it.

Charles Davies:

We had Enter() and Leave() in the 16-bit system, which was Kernighan
and Ritchie inspired. When we went to C++, the standards for exception han-
dling were still being written, so they certainly weren’t available in compilers.
So we carried forward Leave() and Enter() rather than adopting native
C++ exception handling, because at that time it consisted of longjump()
and setjump(). It was very unstructured, and we didn’t like that. We liked
Enter() and Leave(), and we stuck with it.

In Symbian OS, Leave() is a system function (provided by the User
Library) which provides error propagation within a program. Typically,
Leave() is used to guard any calls which can fail (for conditions such as
out of memory, no network coverage and disk full). The system unwinds
the call stack until it finds a prior Leave() call wrapped by a TRAP
macro, at which point the TRAP is executed and the failure is handled by
the program in which it occurred.19

Functions which may fail because of a leave, whether because they
directly invoke the action which might fail or do so indirectly by calling
some other function that does, are described as ‘leaving’ functions.
By convention, leaving functions are named with a trailing ‘L’, which
makes it easy for programmers to see where they are invoked and trap
appropriately.

The second leg of the error-handling strategy uses the ‘cleanup stack’
to store pointers to heap-allocated objects whose destructors will fail to
be called if the normal path of program execution is derailed by a leave.20

As well as unwinding the call stack to handle the leave, the cleanup stack
is also unwound and destructors are called on any pushed objects.

The third leg of the strategy is ‘two-phase construction’, which guaran-
tees that C++ construction of an object will always succeed, by moving
any leaving calls out of the C++ constructor into a secondary construc-
tor. (It is important that construction succeeds, since only then can the
object’s destructor be called; if the destructor cannot be called, memory
may have been leaked [Stroustrup 1993, p. 311].) Again, a number of
system functions are available to regularize the pattern and take care
of underlying details for developers. (In its earliest implementation, two-
phase construction was matched by two-phase destruction. The eventual
consensus was that this was an idiom too far.)

19 See [Stichbury 2005, p. 14] for a detailed explanation.
20 See the discussion in [Harrison 2003, p. 150]. This is the authoritative programmers’

guide.



SYMBIAN OS IDIOMS 77

Charles Davies:

We had an ethic that said that memory leakage was something the programmer
was expected to manage. So something like the Window Server, which might
be running for a year at a time, needed to make sure that if an exception was
called it didn’t leak memory. The cleanup stack was an invention to make it
easier for people to do that. You’d have an event loop, and at the high end
of the event loop you’d push things on the stack that needed to be unwound,
whether they were files that needed to be closed or objects that needed to be
destroyed. That was a pragmatic thing, you know. ‘Let’s provide something
that encourages well-written applications from the point of view of memory
leakage.’

Cleanup is pervasive in the system ([Harrison 2003, p. 135]), permeat-
ing every line of code a developer writes, or reads, in Symbian OS, with
its highly visible trailing ‘L’ naming convention, its Leave() methods
and TRAPs, and its cleanup stack push and pop calls.

For new developers, it is both highly visible and immediately unfamil-
iar, which leads to an immediate impression that the code is both strange
and difficult. However, the conventions are not intrinsically difficult,
even if the discipline may be. The purpose is equally straightforward:
to manage run-time resource failures. On a small device, memory may
rapidly get filled up by the user (whether by loading a massive image,
downloading too many MP3s, or simply taking more pictures or video
clips than the device has room for). Other resources, whether USB cable
connections, infrared links, phone network signals, or removable media
cards, can simply disappear without warning at any time. Mostly these
hazards simply do not exist on desktop systems. On phones, they are the
norm.

Martin Tasker:

I think the cleanup stack was a brilliant solution to the problem that we were
faced with at the time.

Descriptors
Descriptors are the Symbian OS idiom for safe strings. (‘Safe’ means
both type safe and memory safe and compares with C++ native C-style
strings, which are neither21) Descriptors were invented (by Colly Myers)
because there was no suitable C++ library class, or none that was readily
available.

21 Nor are Java or Microsoft Foundation Class strings for that matter, according to
[Stichbury 2005, p. 55].



78 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

In principle, descriptors simply wrap character-style data and include
length encoding and overrun checking. (Descriptors are not terminated
by NULL; they encode their length in bytes into their header, and refuse
to overrun their length.) As well as this basic behavior they also provide
supporting methods for searching, matching, comparison and sorting.

Descriptors support two ‘widths’, that is, 8-bit or 16-bit characters,
based on C++ #define (typedef) and originally designed to enable a
complete system build to be switched, more or less with a single defini-
tion, between ASCII-based and Unicode-based character text support.

More interestingly, descriptors also support modifiable and unmod-
ifiable variants and stack- and heap-based variants. The content of
unmodifiable (constant) descriptors cannot be altered, although it can
be replaced, whereas that of modifiable descriptors can be altered, up to
the size with which the descriptor was constructed.22

Another important distinction is between buffer and pointer descrip-
tor classes. Buffer descriptors actually contain data, whereas pointer
descriptors point to data stored elsewhere (typically either in a buffer
or a literal). A pointer descriptor, in other words, does not contain its
own data. A final distinction is between stack-based and heap-based
buffer descriptors. Stack-based descriptors are relatively transient and
should be used for small strings because they are created directly on the
stack (a typical use is to create a file name, for example. Heap-based
descriptors, on the other hand, are intended to have longer duration
and are likely to be shared through the run-time life of a program (see
Table 3.1).23

Table 3.1 Descriptor classes.

Constant Modifiable

Pointer TPtrC TPtr

Buffer (stack-based) TBufC TBuf

Heap-based HBufC

See [Harrison 2003, p. 123] for a fuller explanation of the descriptor
classes.

22 Although modifiable, once allocated there is no further memory allocation for a
descriptor, so its physical length cannot be extended. For example, to append new content
to a descriptor requires that there is already room within the descriptor for the data to be
appended.

23 [Stitchbury 2005] contains a good overview.



SYMBIAN OS IDIOMS 79

Descriptors differ from simple literals, which are defined as constants
using the LIT macro, in that they are dynamic (literals are created at
compile time, descriptors are not). A typical use of a pointer descriptor is
to point to a literal.

Martin Tasker:

The 8-bit/16-bit aspect was ASCII versus Unicode, though, in retrospect we
should have been braver about adopting Unicode straight away. But bear in
mind that the ARM 3 instruction set we were then using didn’t have any 16-bit
instructions or, more accurately, it didn’t have any instructions to manipulate
16-bit data types, so it was not efficient to use Unicode at that time. But maybe
we should have had more foresight and courage, because it turned out to be
a distraction. But as a kind of memory buffer, I think they were reasonably
distinctive.

Given the state of the art at the time, Peter Jackson believes that the
distinction between 8-bit and 16-bit was understandable but that a more
naturally object-oriented approach would have been preferable.

Peter Jackson:

I think it would have been more elegant to have a descriptor that knew
internally what kind of descriptor it was, whether it was the 8-bit or 16-
bit variant. I never liked the fact that some of these things were done by
macros.

Descriptors are not only type safe, they are memory safe, making mem-
ory overflow (‘out-of-bounds’ behavior) impossible. Descriptor methods
will panic if an out-of-bounds attempt is detected (see Figure 3.1).

TDesC

TDesTBufCBase

TPtr TBufHBufCTBufCTPtrC

Figure 3.1 Descriptor class hierarchy



80 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

Charles Davies:

Descriptors were Colly Myers’s thing, definitely, and the idea was rather
like the cleanup stack, to stop people doing memory overwrites. That’s a
big protection against worms and other attacks, deliberate and malicious
overwriting of the heap, although at the time that wasn’t the driving reason to
do it. We did it to stop programmers making mistakes.

C and T and Other Classes

As well as the use of the trailing ‘L’ (for ‘leaving’) and ‘C’ (for ‘constant’)
to flag properties of methods, Symbian OS also uses some similarly
straightforward class-naming conventions to flag fundamental properties
of classes.

Martin Tasker:

If you look at the C and T types, they offer a very, very simple guide to
the programmer as to how to use these types. They are as simple as Java’s
objects and built-ins. We don’t do garbage collection because C++ doesn’t do
garbage collection, so we have to cope with that. We have to do it manually,
but otherwise I think our conventions are as simple as Java.

The most important naming conventions are summarized as follows: 24

• T classes are simple types which require no destructor and behave
like C++ built-in types.

• C classes derive from CBase and should always be explicitly con-
structed, thus ensuring that they are always allocated on the heap.
CBase classes also therefore require explicit destruction. CBase pro-
vides a basic level of additional support, including a virtual destructor,
allowing CBase-derived objects to be deleted through the CBase
pointer and performing cleanup stack housekeeping. CBase also
overloads operator new to zero-initialize an object when it is first
allocated on the heap. All member data of derived classes is therefore
guaranteed to be zero on initialization.

• R classes indicate resource classes, typically a client session handle for
a server session. Since an R class typically contains only a handle, it
does not require either construction or destruction. R classes therefore
may safely be either automatics or class members.

24 [Stichbury 2005, Chapter 1] provides a comprehensive discussion.



SYMBIAN OS IDIOMS 81

• M classes are ‘mixin’ classes (abstract interface classes), the only form
in which multiple inheritance is supported in Symbian OS.

• Descriptors are immediately recognizable as either TPtr pointer
descriptors, or TBuf (stack-based) or HBufC (heap-based) buffer
descriptors.

Manifest Constants

Symbian OS uses manifest constants – implemented as typedefs, that
is, system-defined types – instead of the native types supported by a
standard C++ compiler on standard hardware. This is partly, of course,
because the cross-development model means that the eventual intended
target platform is not the same as the development platform, hence the
‘native’ types of the platform on which the code is compiled may differ
from those of the platform on which it is intended to run. The use of
type definitions also has its roots in designing to support both ASCII and
Unicode builds, which is now superfluous since Symbian OS has been
all-Unicode since before v6.

Supporting emulator builds (that is, running Symbian OS programs on
PC as well as ARM, and not just developing on PC) creates the additional
complexity of requiring not one supported compiler but two (or more);
originally Microsoft compilers were specified for emulator builds and
GCC for ARM. More recently Metrowerks and Borland compilers have
been supported and, in Symbian OS v9, ARM’s RVCT replaces GCC
as the ‘official’ ARM target compiler (although GCCE is still supported
to ensure a low-cost development option). Recent initiatives such as
Eclipse, for example, or the adoption of the standard ARM EABI are likely
to continue to change the story of the development tools.25 Again, using
manifest constants provides the necessary level of decoupling of code
from compiler dependencies.

The key classes are summarized as follows:26

• TInt and TUint are the generic types for signed/unsigned integer
values; TInt8, TInt16, TInt32, and TUint8, TUint16, TUint32
are also provided; in general, the least specific types are preferred,
that is, TInt and TUint

• TInt64 is a 64-bit integer type intended for platforms without a
native 64-bit type

25 Symbian, like Psion before it, has always assumed that mainstream development is
done under Microsoft Windows, although this is not the only solution that works. There are
a number of independent open-source solutions for developers wanting to work on Linux
or Mac OS X.

26 Again, [Stichbury 2005, Chapter 1] provides a comprehensive discussion.



82 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• TReal, TReal32 and TReal64 are single- and double-precision
floating-point types; again the least specific type, TReal, is preferred

• TText8 and TText16 are 8-bit and 16-bit unsigned types for char-
acters

• TBool is a 32-bit unsigned Boolean type

• TAny* is used instead of void*.

Unique Identifiers

Unique identifiers (UIDs, implemented as signed 32-bit values) are cen-
trally controlled in Symbian OS. One common usage of them is to identify
applications and other binary and data types. UIDs, for example, are used
in Symbian OS to associate data types with programs and plug-in types
with frameworks. UIDs are also used as feature IDs and package IDs (for
SIS files).

Charles Davies:

The idea was that if you had polymorphic DLLs, dynamic libraries in other
words, then there are situations where the DLL is a plug-in, and it all goes very
wrong if the caller doesn’t get the interface it’s expecting from the DLL, so we
needed to characterize the interface. And we came up with the idea of using
a UID to do that.

UIDs are used in a three-tier construction to build TUidType objects:

• UID1 – a system level identifier that distinguishes EXE from DLL types

• UID2 – a specifier for library types that distinguishes between shared
library DLLs and various types of polymorphic DLL (for example FEPs
and other types of plug-in)

• UID3 – the individual component ID, also used by default as the
secure identifier (SID) required by platform security.27

UID3 is used, for example, by developers to uniquely identify their
applications, and can then be used by the streams, stores and files created
by that application to identify themselves. UID3 is assigned through
Symbian’s UID allocation database, from which third-party developers
can request blocks of UIDs for use in their applications.

Platform Security introduces two new types of UID, the SID (Secure
ID), which by default is identical to UID3, and VID (Vendor ID).

27 See the discussion in [Sales 2005, p. 328].



PLATFORM SECURITY FROM SYMBIAN OS V9 83

3.8 Platform Security from Symbian OS v9

Platform Security is the system-wide security model introduced in Sym-
bian OS v9. Providing an open, third-party programmable platform has
been an important principle in the development of Symbian OS. How-
ever, openness brings with it the risk of misbehaving software (whether
accidentally or deliberately misbehaving) finding its way onto users’
devices. The security model is designed to protect users from that risk,
while still preserving the openness of the platform.

Architecturally, Platform Security is a set of pervasive changes at all
levels of the system, based on a simple conceptual model,28 which is
deliberately as lightweight as possible, and supported by the Symbian
Signed certificate signing program, which provides a means for creating
a formal link between an application and its origin, as well as providing
a review mechanism to promote best practice in designing and writing
Symbian OS applications.

Will Palmer is one of the system architects who is currently responsible
for the Platform Security project.

Will Palmer:

There are three principles to Platform Security. The first principle is the unit of
trust, the idea of the process being the unit of trust. Since memory is already
protected per-process on the processor, that fits quite nicely, and it also has the
advantage of being a ‘least-privilege’ approach, based on the smallest element
in the operating system. The second principle is the idea of capabilities, which
are in effect authorization tokens. So to be able to access a potential resource,
a process needs to possess a particular capability that allows it to do so. And
the third principle is data caging, which is about read and write protection of
files, which protects the integrity of data as well as protecting data from prying
eyes.

The essential principles are:

• processes as the unit of trust,29 which turns trust into another process-
granular system resource

• capabilities as the tokens of trust, which are required to perform
actions

28 According to [Heath 2006, p. 18], the model conforms to the eight design principles
of [Saltzer and Schroeder 1975], which include economy, openness, least privilege and
psychological acceptability.

29 This is an elegant extension of the kernel’s process model, in which the process is the
unit of ownership of all system resources (for example, memory protection is per process).



84 INTRODUCTION TO THE ARCHITECTURE OF SYMBIAN OS

• data caging, which protects data from prying eyes (by policing read
access) or interference (by policing write access) or both.

The direct consequence of defining the process as the unit of trust is
that all threads in a process share the same level of trust (which is natural,
since they have access to the same resources).

The goal is to protect device users from the kinds of intentionally
rogue software, or ‘malware’, that plague the PC world. Symbian OS for
a long time avoided some of the worst threats from malware because it
was typically deployed in ROM-based devices, in which the system itself
cannot be corrupted (for example, it is impossible to install trapdoors
or trojans in system files) because system code is stored in unwriteable
ROM memory. By design, Symbian OS also protected against some of
the more trivial security holes found on other systems. Descriptors, for
example, make buffer overrun attacks much harder. Similarly, Symbian’s
microkernel architecture helps to increase security and robustness; since
the trusted kernel is deliberately the smallest possible subset of system
functions, there is little privileged code to exploit, and the smaller
codebase is easier to review and validate.

The nature of mobile devices, especially phones, also makes them
different from desktop systems. The physical access model is different
(personal devices are less likely to be shared) and the network access
models are different (connections are transient).

On the other hand, phones also present new opportunities for malware.
If a phone, or user, can be spoofed into making a call, real money is
at stake. (Premium-rate-phone-number scams are an example.) From
a network perspective, the cost of network disruption is immediately
commercially quantifiable in a way that Internet attacks are not.

These differences all require appropriately designed security mecha-
nisms.

Will Palmer:

When the capability model was designed there were a set of constraints about
what it had to deliver: it had to be robust; it had to be simple; and it shouldn’t
get in the way of the operation of a phone so, for example, you couldn’t use
hundreds of extra clock cycles on it, because on a small device you have
performance and power constraints. Also it had to be appropriate for an open
operating system: people have to be able to install additional software on their
phones and it has to be simple and easy to understand.

Data caging, for example, was chosen for its simplicity and economy
(in terms of clock cycles and power). Another important consideration
was that mechanisms which users are quite comfortable with on desktop
computers – logging on, for example – would be quite inappropriate on
a phone.



PLATFORM SECURITY FROM SYMBIAN OS V9 85

Will Palmer:

Authorization based on the process–capability model is simple to understand
and it fits the phone case much better than an authentication system. So in
an authentication system you log on and your password authenticates you to
the system, and once authenticated you can do anything permitted by your
authentication level. But a phone is different: it’s a single-user environment;
it’s in your pocket; it belongs to you. Although things are getting more complex
now because of requirements coming in for administrative rights. For example,
the network operator might want to change settings on the phone.

The capability mechanism is used to protect both ‘system’ and ‘user’
(i.e., application-owned) resources. Will Palmer sums up the difference
neatly.

Will Palmer:

It’s not that some types of capabilities are more powerful than others, they just
protect different things. System capabilities protect the integrity of stakeholders
and of the device, whereas user capabilities protect the user’s privacy and
money.

Protected APIs are tagged at method-level with the capability required
to exercise them and access any underlying resources (data files, for
example). The capabilities of a method are part of its interface. To use
protected APIs therefore, developers must request an appropriate set of
capabilities, which is done through the Symbian Signed program.

A ‘signed’ application is granted a set of capabilities. Application
capabilities are verified by servers when protected APIs are called by
applications. Unsigned software is flagged to the user at installation
time as being unsigned (and therefore untrusted). Thus, while unsigned
applications can assign any user capabilities to any binaries as they
see fit, the user is alerted at installation time and given the option to
approve the application or not. Unsigned applications cannot use system
capabilities, in other words they cannot use APIs which affect the behavior
of the device. Data security is provided on a per-application basis by the
data-caging model.




