
VLSI Design Laboratory
A simple MP3 player design using VHDL

Prof. Dr.-Ing. Ulf Schlichtmann

May. 2011

Institute for Electronic Design Automation
Department of Electrical Engineering and Information Technology

Technische Universität München
Arcisstr. 21

80333 Munich
Germany

Phone: +49 (0)89 289 23666
Fax: +49 (0)89 289 63666

Email: eda@ei.tum.de

Copyright c© by Institute for Electronic Design Automation, Technische Universität München, 2011. No
part of this publication may be reproduced or distributed in any form without the prior written permission
of the Institute for Electronic Design Automation, Technische Universität München.

2005-2009 Bing Li

2008-current Qingqing Chen

Contents
0. README . 4

1. Introduction .6

1.1 VLSI Design Flow . 6

1.2 VHDL .6

2. Lab Overview . 8

2.1 System Structure . 8

2.2 Hardware .9

3. Module Specifications . 11

3.1 KBC Specification .11

3.2 FIO Specification .12

3.3 LCDC Specification . 13

3.4 Decoder Specification . 16

4. VHDL Design Guidelines . 19

5. Displaying File Names . 22

5.1 KBC Interface .22
5.2 Reading File Information . 22

5.3 Arbiter&Multiplexer .24

5.4 Receiving File Information .26

5.5 Building the List Function . 29

6. Making a Simple MP3 Player . 31

6.1 Playing the Music . 31

6.2 Customizing the MP3 Player . 32

7. Implementing the MP3 System . 33

7.1 Simulating and Synthesizing the PLCN Module . 33

7.2 Implementing the Complete MP3 System . 34

7.3 Testing the MP3 Player .35

4 README

0 README
1. Login/logout

In this lab the work environment is Linux. To login to the system, type your username and password
in the login window. Your username and password are assigned in the lab introduction session. To
logout, select “rse## abmelden ...” in the “System” menu, and then select “Benutzer abmelden” in
the popup window.
NOTE: Please do not shutdown (“ausschalten”) or reboot the computer, since others may be working
on the same computer by remote login.

2. Documents
All documents can be found on the course website at
http://www.eda.ei.tum.de/lehrveranstaltungen/praktika/vlsi-design.
This lab manual is organized as follows:
Section 1 gives a short introduction about digital design flow and VHDL. Section 2 provides an overview
of this lab. The specifications of the given modules are presented in Section 3. In Section 4, some VHDL
guidelines are given, which are useful instructions for describing RTL circuits using VHDL. The design
tasks of the lab are explained in Section 5 and 6. Finally, the instructions for simulating the playcontrol
module and implementing the MP3 player are given in Section 7.

3. Project
The MP3 player project is in the $HOME/prj/ directory. The work directory for the playcontrol module
is $HOME/prj/playcontrol/. The entity for the module is provided in the VHDL file playcontrol.vhd
and a simple testbench for it is given in playcontrol tb.vhd. The top level design of the MP3 player
and the download command which configures the FPGA can be found in $HOME/prj/top system/.
To submit your design, just leave your working playcontrol project (including all your VHDL code),
your top system project, and possibly the ps2 kbc project in $HOME/prj/. The implemented MP3 player
project including all intermediate files should be kept for demonstration.

4. Design tools and hardware
The HDL simulator recommended in this lab is ModelSim by Mentor Graphics. The FPGA implemen-
tation tool is Xilinx ISE.
To start ModelSim, type “vsim &” in a terminal window.
To start Xilinx ISE, type “ise &”.
The “&” symbol makes the program run in the background so that the current terminal window can still
accept new commands. To download your design to the FPGA board (generate the top system.bit file
first, see Section 7), navigate to $HOME/prj/top system/ and issue the “./MP3download” command.
The Xilinx Virtex-II Pro development boards in the lab room 2961 can be used to test the FPGA design.
NOTE: Please do not take off the compact flash card from the slot. Doing this may damage the board
or the card slot.

5. Recommended work schedule

Week 1 ∼ Week 4 Introduction Session, Exercise 1 ∼ Exercise 6
Week 5 Test the list function in hardware
Week 6 ∼ Week 7 Exercise 7 ∼ Exercise 8
Week 8 Test the play function
Week 9 ∼ Week 10 Exercise 9 ∼ Exercise 11
Week 11 ∼ Week 12 Test the complete system, final exam

6. Final exam
The final exam is an oral test (closed book test) for about 20 Minutes per candidate. In the exam, the
FSM diagrams of Exercise 7 and a one-page “Instruction for Use” of your design are to be submitted.
The exam starts with the demonstration of your MP3 player. You should try to show and explain a bit
(especially for those functionalities that are not described in this lab manual) about all the functionalities
you have implemented. Thereafter the state machines of Exercise 7 you submitted should be explained.
Finally we will ask you some questions about the design and VHDL.
The date of the exam will be announced during the semester by email as well as on the course website.
Both the oral test and your design contribute to the final grade. The final oral exam is mandatory for
receiving credits or a certificate in English or a “Wahlfachschein” in German.

7. Basic Linux commands
All the design tools can be invoked by terminal commands. To open a terminal window, double-click
the “Konsole” icon on the desktop. To run a Linux command, type the command in the terminal

README 5

window, and then press the ‘Enter’ key. Some useful Linux or AFS commands are listed below:
cd dir Change the current directory to dir. $HOME (equivalent to ∼) is the default

directory (the rse## directory).
cd .. Navigate up the directory by one level.
cd ../.. Navigate up the directory by two levels.
ls dir List files in the dir directory. If dir is not specified, list the current directory.
cp src dst Copy the file src to dst.
mv src dst Rename/move the file src to the file or directory dst.
rm file Remove the file file.
rm -r dir Remove the directory dir (dir must be an empty directory).
mkdir dir Create a new subdirectory in the current directory with the name dir.
fs listquota Show your volume quota. It is an AFS command.
man command Display the manual of the command command.

8. OpenAFS usage
The $HOME directory of your rse## account can be accessed from outside of the institute with an
OpenAFS client. The followings are instructions to install and configure an OpenAFS client.

Linux System
Visit the website of OpenAFS (http://www.openafs.org/release/index.html) with a browser. The
rpm packages can be found for Fedora and RHEL. Download and install openafs-version.rpm and
openafs-client-version.rpm. After that the kernel module package kmode-openafs-version.rpm
corresponding to your system kernel version should be installed. The configuration files are located in
/usr/vice/etc.
For configuration, type the followings to the corresponding files.
SuidCells.local:

regent.e-technik.tu-muenchen.de
CellServDB.local:

129.187.230.2 #refi.regent.e-technik.tu-muenchen.de
129.187.230.9 #refile.regent.e-technik.tu-muenchen.de

CellAlias:
regent.e-technik.tu-muenchen.de regent

By issuing the command “klog rse## -cell regent” an AFS token will be received from the server.
Thereafter, $HOME can be accessed in /afs/regent/home/rse##/rse##/ (rse## is the login name).
For debian or ubuntu systems, download and install the package openafs-client in the repository. To
compile and install the kernel module, refer to /usr/doc/openafs-client/README.modules.

Windows System
Download and install the OpenAFS client from http://www.openafs.org/windows.html. Double-
click the “AFS Client Configuration” icon in the “Control Panel”; The “AFS Client Configuration”
utility opens, displaying the “General” tab; In the “Cell Name” box, enter the name of the AFS cell
regent.e-technik.tu-muenchen.de; Select the “AFS Cells” tab; Press the “Add” button. In the “AFS
Cell” entry, input regent.e-technik.tu-muenchen.de; Press the “Add” button in that window; In the
“Server Name” entry, input refi.regent.e-technik.tu-muenchen.de; Press “OK”; Click the “Add”
button, input refile.regent.e-technik.tu-muenchen.de; Press “OK”.
To access your $HOME directory, run the openafs-client program. In the “Tokens” window input your
login name and password to get a token from the server. In the “Drive Letters” window add your
directory /afs/regent/home/rse##/rse##/. You can access your $HOME directory by navigating to the
driver with the driver letter you set.

6 INTRODUCTION

1 Introduction
Traditionally integrated circuits have been developed using schematics. With shrinking silicon structures and
higher integration densities, automated tools for Electronic Design Automation (EDA) have been developed.
Growing complexities of Very Large Scale Integrated circuits (VLSI) and time-to-market pressures resulted
in research efforts for computer aided design, which led to new and more efficient design methods. In this
section, today’s VLSI design flow will be sketched, and the history and the features of VHDL†, the hardware
design language used in this lab, will be briefly introduced.

1.1 VLSI Design Flow
Developing technical products typically consists of a sequence of construction (synthesis) and validation
(analysis) steps. This also applies to the design of VLSI circuits. Figure 1 shows a typical VLSI design flow
starting at the system level with a specification of the system behavior and the interfaces to its operating
environment. Through several abstraction levels, this initial specification is gradually refined until a detailed
description (mask data) necessary for fabrication of the integrated circuit is obtained.

simulation
Logic

Circuit level

Fabrication

Logic level

RT level

System level

SIMULATION

Functional

simulation

Analog
simulation

TEST

Layout synthesis

synthesisLogic

High−level synthesis

LEVELS
ABSTRACTION MODELING

structuralbehavioral

algorithms
flowcharts, controllers,

memories,
busses

ALUs,
multiplexers,
registers

flow graphs
control/data

boolean
equations

gates,
flip−flops

transistorsdifferential
equations

Figure 1: VLSI design flow

High level synthesis transforms the system level description to a register transfer level (RTL)
description. Typically a controller part controlling the sequence of actions, and a dataflow part for arithmetic
operations are generated. On the system level and the RTL level the function of the circuit can be simulated,
but there is no enough information yet for doing a detailed timing simulation.

Through logic synthesis and logic optimization, an RTL description is refined to the logic level.
Boolean equations or gates and flip-flops provide a detailed logic description enabling also timing simulation.
In the last step of logic synthesis, the circuit description is mapped to a technology specific library of circuit
components (technology mapping). On the logic level it is very important to validate the design by logic
simulation of the function and timing.

Layout synthesis calculates the positions of the circuit elements on the chip and generates geometrical
layout data at the circuit level. Here the elements are assigned places on the chip by placement and the
interconnect between these elements is realized by routing wires between them.

After logic synthesis the circuit elements and their physical implementation are known. Layout synthesis
adds information about the wiring, which is very important for exact timing analysis as wire delay dominates
component delay in advanced process technologies. Finally, the implementation of the circuit on transistor
level is given and a precise analog simulation is possible.

When the function and the timing of the placed and routed circuit have been validated and the con-
straints are met, the design is handed over to a semiconductor foundry for fabrication.

1.2 VHDL
In recent years, VHDL has emerged as one of the most important electronic design languages. VHDL was
originally proposed by the U.S. Department of Defense (DoD) in order to provide a means for documentation

† VHDL stands for “VHSIC Hardware Description Language”, in which VHSIC is the abbreviation of
“Very High Speed Integrated Circuit”.

INTRODUCTION 7

and simulation of military electronic components. In 1987, it was adopted by IEEE as a standard (IEEE-
1076-1987).

By utilizing VHDL as a specification language it is possible to start simulation of complex systems
before their implementations are fully specified. Furthermore, VHDL facilitates the top-down design process
where a higher level specification is developed, debugged and finally used to validate the correctness of the
next lower level implementation. Since VHDL supports mixed abstract level simulations, it is possible to
adopt also the bottom-up or mixed design styles.

VHDL is derived from the Ada programming language. Therefore, it provides the typical means of
software languages for describing functionality and control constructs. Additionally, it incorporates the
necessary constructs for modeling hardware components, e.g., methods for describing concurrency and timing.

In a typical VLSI design environment, VHDL can be used in three different fashions employing various
levels of abstraction and modeling styles:
◦ High-level specification
◦ Logic/standard component level design
◦ Standard component model library support

During the high-level specification phase, VHDL is used as an architectural tool to aid the analysis and
the evaluation of design alternatives. At this level, virtually all the language features of VHDL are used,
especially abstraction mechanisms (e.g., user defined data types). This stage of design is often performed
without the knowledge or the concern on specific implementation details.

At the logic/standard component level, the actual implementation of the design is determined. The
design is implemented as a structural composition of predefined (or previously developed) standard com-
ponents. In this design stage, typically only a subset of VHDL which is synthesizable by commercial logic
synthesis tools is used. When a synthesis tool meets a high level modeling description written in VHDL,
e.g., the “after” statement, it may simply ignore this description. As a result, the mismatch between the
high level simulation and the behavior of the synthesized circuit may happen. Therefore, when describing
circuits using VHDL on the RTL level, some of the advanced features of VHDL should be carefully avoided.

Standard component libraries are precompiled and provided to design teams. These libraries are usually
targeted to a specific semiconductor technology, and are usually highly parameterizable so that they can be
reused in different circuit designs.

Table 1 shows an overview of the application of VHDL on different abstraction levels in the VLSI design
flow with respect to the description domain.

Level Behavior Structure Data Timing
System level Algorithms Processes Abstract Causality

data types
Register-transfer Dataflow, Finite Register, ALU Bitvectors Clock cycles
level (RTL) State Machines (FSMs)
Logic level Boolean equations Gates, Flipflops Bits Delays

Table 1: Abstraction levels and domains

VHDL is supported by all major EDA tools and is accepted as an industry standard. Using VHDL
as a standard circuit description language, design tools from different vendors can be easily integrated into
one design environment, and it would be also easier to migrate to new technologies or different foundries.
Furthermore VHDL provides both an executable specification with well-defined simulation semantics and
a human readable documentation of a design. Finally, with its flexibility to parameterize design models
(macros) with generic variables, the modification of existing designs and the reuse of previously developed
components in VHDL format are simplified.

8 LAB OVERVIEW

2 Lab Overview
This section introduces the content and the task structure of this lab. The main goal of the lab is to design
a simple MP3 player using VHDL and implement it with an FPGA (Field Programmable Gate Array). The
first part of the task is to design the playcontrol (PLCN) submodule for the MP3 player using VHDL. And
then the top level project top system will be created to integrated the PLCN with other given modules
to form a functioning system. The complete FPGA design process, including adding timing constraints,
pin assignment, synthesis, placement&routing, bitstream generation, will be carried out. Finally, the MP3
design will be downloaded to hardware for testing.

2.1 System Structure
Figure 2 shows the structure of the MP3 player of this lab. The modules inside the dash box are to be
implemented in the FPGA chip, and the modules outside are implemented by other ASIC chips on the
testing board.

Keyboard

AC’97 Hardware

C
om

pact F
LA

S
H

P
LC

N

LCD−Screen

MP3 ProjectKBC

LCDC

FIO

Decoder/AC’97

Figure 2: MP3 system structure

The functions of the modules inside the FPGA are listed below:
FIO Module
This module reads raw data saved in the Compact Flash (CF) card, parses the FAT16 file system, and
returns file data and file information, e.g., file name and file size.
KBC module
This module monitors the keypad connected to the FPGA chip through a PS/2 interface and sends key
scan codes to the PLCN module whenever a key is pressed.
Decoder&AC’97 Module
This module receives and decodes MP3 data from the PLCN module. The decoded samples are saved
in an internal buffer. These samples are read and played by the AC’97 hardware automatically. The
AC’97 hardware is controlled by hardware control commands. The status of the input MP3 data buffer
(DBUF), the sample buffer (SBUF) and the decoder is monitored through the interfacing signals.
LCDC module
This module controls the 16×2 character LCD. Besides displaying characters on fixed positions, this
module provides flexible scrolling functions.
PLCN module
This module integrates all the modules above together to form a functioning MP3 player. The main task
of this lab is to design and test this module. The modules above except PLCN have been implemented
and provided as a netlist in the MP3 project. The functions of the given modules and their interfaces
to the PLCN module are described in Section 3, which should be read thoroughly and carefully before
the design of your PLCN module.

LAB OVERVIEW 9

The lab is partitioned into the following steps:
1. Create the PLCN project

This project is used to simulate and synthesize the submodule PLCN . Since this module will be inte-
grated to the top-level design, IO pads should not be implemented for interface signals during synthesis.
Instructions for this step can be found in Section 7.

2. Display file information
The information about a file stored in the CF card, including the file name, the access time, the file size
etc., is read through the FIO module by PLCN . The file name is then sent to the LCDC module, which
displays the corresponding characters on the LCD screen. The key scan codes for “previous” or “next”
from the KBC module control the switching of the file names to be displayed. After finishing this step,
the MP3 system can be tested by creating the top system project and implementing the design (Step 5).
After downloading the design into FPGA, the names of the files stored on the CF card can be browsed
with the keypad.

3. Play music
The PLCN module reads MP3 data periodically from the FIO module. These data are sent to the MP3
Decoder module, and the decoded PCM samples are written to SBUF for playing. The play process is
controlled (started or stopped) by pressing the keys on the keypad.

4. More control functions
Additional functions are implemented, including mute, pause, volume control, etc.

5. Create the top level design
The top-level project which integrates all the submodules is created in this step. Unlike the PLCN
project, the top-level design should go through the complete FPGA design flow and generate the down-
loadable bitstream for testing. Instructions for creating the top system project can be found in Section 7.

6. System test
In this step, the FPGA bitstream is downloaded into the FPGA chip to check if the system works. If
there are problems, the VHDL code of the PLCN module and the project settings should be checked.

2.2 Hardware
In this lab the Xilinx Virtex-II Pro development board (Figure 3) is used for hardware implementation and
testing. The FPGA chip type on the board is Virtex II-Pro XC2VP30-7FF896C by Xilinx. Two PowerPC
CPU cores are integrated inside this FPGA, one of which runs the MP3 decoder migrated from MAD library.
In detail, the hardware test environment contains:

Xilinx Virtex-II Pro FPGA XC2VP30-7FF896C with 2448Kbit Block RAM (BRAM), 30816 logic cells
and two PowerPC 405 processors
256MB DDR266 SDRAM
AC’97 audio chip (LM4550 by National Semiconductor)
Xilinx System ACE configuration chip with 512MB Compact Flash card
PS/2 controller with a keypad
A 16×2 character LCD
Xilinx USB download cable

10 LAB OVERVIEW

Figure 3: The Virtex-II Pro development board

MODULE SPECIFICATIONS 11

3 Module Specifications
This section describes the interfaces of the given modules, including the PS/2 keyboard controller (KBC), the
File I/O module (FIO), the LCD controller (LCDC) and the decoder (DEC). The PLCN module uses the
functions of these given modules to implement the MP3 player system. Depending on the specific design, not
all the ports described in the following specifications are needed to implement the PLCN module in this lab.
NOTE: Every output port of the playcontrol module should have a driver inside the module. Otherwise,
errors will be reported during the generation of the bitsteam for the top system module.

3.1 KBC Specification
The keyboard controller monitors the actions of the keypad in the MP3 player system. When a key is pressed
its scan code is read and stored in a FIFO whose output is connected with the PLCN module. The interface
signals of the KBC module to the PLCN module are shown in Table 2.

Signal Name Width Direction (KBC view)
RD 1 input
RD ACK 1 output
DATA 8 output
EMPTY 1 output

Table 2: Interface signals of the KBC module

RD
When the RD signal is ‘1’ at a rising clock edge, a scan code is read from the FIFO.
RD ACK
In response to a valid RD signal (RD is ‘1’ at a rising clock edge), the RD ACK signal switches to ‘1’ after
a definite number of clock cycles. If the RD signal is ‘1’ but the FIFO is empty, the KBC module returns
no valid RD ACK.
DATA
When RD ACK is ‘1’, the data on the DATA bus is a valid scan code.
EMPTY
The EMPTY signal shows the status of the key FIFO. When at least one piece of scan code exists in the
FIFO, EMPTY is ‘0’, otherwise ‘1’.

Some scan codes listed in Table 3 are predefined as the control keys of the MP3 player. Other scan codes
can be found in Table 4. They can be used to implement extra functions of the MP3 player.

Key Scan Code Key Name Description
‘8’ 0x75 LISTPREV Display the previous file name.
‘2’ 0x72 LISTNEXT Display the next file name.

‘Esc’ 0x76 PLAY Start playing music.
‘Ctrl’ 0x14 STOP Stop playing music.
‘Alt’ 0x11 PAUSE Pause.
‘←’ 0x66 MUTE Mute (still playing, but no sound).
‘+’ 0x79 INCVOL Increase the volume.
‘−’ 0x7B DECVOL Decrease the volume.

Table 3: Predefined scan codes

Key Scan Code Key Scan Code Key Scan Code Key Scan Code
‘Esc’ 0x76 ‘Ctrl’ 0x14 ‘Alt’ 0x11 ‘←’ 0x66
‘Num’ 0x77 ‘÷’ 0x4A ‘×’ 0x7C ‘−’ 0x7B

‘7’ 0x6C ‘8’ 0x75 ‘9’ 0x7D ‘+’ 0x79
‘4’ 0x6B ‘5’ 0x73 ‘6’ 0x74
‘1’ 0x69 ‘2’ 0x72 ‘3’ 0x7A ‘Enter’ 0x5A
‘0’ 0x70 ‘,’ 0x71

Table 4: Scan codes of the keypad

12 MODULE SPECIFICATIONS

NOTE: The PS/2 controller (the ps2 kbc module) is a simple one that may not react properly if you press
a key without releasing for a long time. The problem is explained and is to be solved in Exercise 11.

3.2 FIO Specification
The FIO module parses the FAT16 file system on the Compact Flash card and returns file information and
MP3 data. The interface of the FIO module to the PLCN module is defined in Table 5.

Signal Name Width Direction (FIO view)
BUSIV 1 in
CTRL 1 in
BUSI 8 in
BUSY 1 out
BUSO 32 out
BUSOV 1 out

Table 5: Interface signals of the FIO module

BUSIV
BUSIV indicates whether the data on BUSI is valid. Only when BUSIV is ‘1’ would the command or
parameter of the BUSI signal be processed by the FIO module.
CTRL
CTRL is the control signal of the data bus BUSI. When CTRL=‘1’, the data on BUSI is a command. When
CTRL=‘0’, the data on BUSI is the parameter for the READ/FFSEEK/BFSEEK command.
BUSI
BUSI is the input data bus to the FIO module. When the BUSIV signal is ‘1’, the data on the BUSI
signal is a valid command/parameter if CTRL is ‘1’/‘0’. Six commands are defined for the FIO module,
as are listed in Table 6.
When CTRL=‘0’, BUSI holds the data size parameter to the FIO module. To specify the read data size
(for READ command), the value 0-255 of the parameter designates the data size 1-256 DWORDs (Double
Words, 32 bits) respectively. To specify the parameter for the FFSEEK/BFSEEK command, the value 0-255
designates the size 1-256 KDWORDs (210 DWORDs). Before the READ/FFSEEK/BFSEEK command is
sent, the parameter must be properly set.
BUSY
BUSY shows the status of the FIO module. Only when BUSY is ‘0’ can a command/parameter be sent to
the FIO module.

Command Value Command Name Description
0x00 FILENEXT Get next file information.
0x01 FILEPREV Get previous file information.
0x02 READ Read specified number of data DWORDs. Before this

command is sent, PLCN must send the requested data
size (max. 256 DWORDs).

0x03 OPEN Close the previously opened file and open the file which
is currently listed (on the LCD). Before the data of a file
is read, the open command should be sent by PLCN .

0x04 FFSEEK Forward move the read address of the current opened file.
The parameter to the FIO module specifies the data size
of the forward moving in range of 1 to 256 KDWORDs
(210 DWORDs). If the new read address goes beyond the
end of the file, the current read address is set to the file
end.

0x05 BFSEEK Backward move the read address of the current opened
file. The parameter to the FIO module specifies the data
size of the backward moving in range of 1 to 256 KD-
WORDs (210 DWORDs). If the new read address is less
than the beginning of the current opened file, the current
read address is set to the file beginning.

others Reserved, do not sent at any time.

Table 6: The commands of the FIO module

MODULE SPECIFICATIONS 13

BUSOV
BUSOV is the valid signal for the output signal BUSO. Only when BUSOV=‘1’ are the data on BUSO valid.
Note that BUSOV may be continuously ‘1’ when more than 1 DWORD data are returned, but the sl FIO
module does not guarantee that the valid BUSOV (BUSOV=‘1’) is always continuous when returning data.
BUSO
BUSO returns the requested file information or file data. The FIO module returns 8 DWORDs of file
information in response to a FILENEXT/FILEPREV command. The 32 bytes file information is listed in
Table 7. The file information DWORDs with lower indices are returned before the DWORDs with higher
indices. The file information bytes with lower indices are returned in the lower bytes of a DWORD.
The returned MP3 data in response to a READ command are sequentially output from the BUSO bus.
If the requested data goes beyond the end of the file, which means the file end is reached during a
READ command, the FIO module returns the valid data which are already read and packs the further
data with unpredictable content so that the number of the returned DWORDs is always the same as
requested. The file data DWORDs with lower indices are returned before the DWORDs with higher
indices. The file data bytes with lower indices are returned in the lower bytes of a DWORD.
Whether the output data are file information or MP3 data should be determined by the PLCN itself.
The output data should be counted so that the end of the transfer can be identified.

Bytes Description
10:0 MS-DOS (8+3) filename, padded with spaces.
11 File attribute descriptor byte:

Bit 7, 6: unused bits;
Bit 5: archive bit: ‘1’ if the listed file / directory can be archived;
Bit 4: read-only bit: ‘1’ if the listed file / directory is write protected;
Bit 3: system bit: ‘1’ if the listed FAT entry is a system file;
Bit 2: hidden bit: ‘1’ if the listed FAT entry is hidden;
Bit 1: directory bit: ‘1’ if the listed FAT entry is a directory;
Bit 0: volume bit: ‘1’ if the listed FAT entry is a volume label.

12 Reserved for Windows NT, and can be ignored in this lab.
13 Millisecond portion of the creation time.
15:14 Hour, minute and second portion of the creation time.
17:16 Date portion of the creation time.
19:18 Last access date.
21:20 Extended attribute, set to 0 for FAT16.
23:22 Hour, minute and second portion of the file modification time.
25:24 Date portion of the file modification time.
27:26 Cluster number.
31:28 File size in bytes.

Table 7: File information format of the FAT16 file system

3.3 LCDC Specification
The LCDC module accepts character codes and displays them on a 2line×16 character LCD. This module
provides character displaying and screen scrolling functions. The LCDC module is connected to the PLCN
module through the ports listed in Table 8.

Signal Name Width Direction (LCDC view)
CMD 2 input
BUSY 1 output
CCRM WDATA 36 input
CCRM ADDR 5 input
CCRM WR 1 input
CHRM WDATA 8 input
CHRM ADDR 8 input
CHRM WR 1 input

Table 8: Interface signals of the LCDC module

14 MODULE SPECIFICATIONS

Command Value Command Name Description
00 No command The LCDC module does nothing when receiving this value.

Anytime when no command is sent, tt CMD should be set
to 00.

01 CLEAR This command clears the display on the LCD screen, and
sets all the data in the inside character memory (CHRM)
to 0x20, which is the ASCII code of the space character.

10 REFRESH This command refreshes LCD screen with the data from
the inside memories. The control and character data are
saved in the Character Command Memory (CCRM) and
Character Memory (CHRM). Anytime when some data in
these memories are changed, the REFRESH command should
be applied to update the displaying on the LCD screen.

11 Reserved Reserved by the LCDC module. Users should not send this
command in any case.

Table 9: The commands of the LCDC module

CMD
This signal is used by PLCN to send commands to LCDC . Commands corresponding to each value of
CMD are listed in Table 9.
BUSY
When this bit is logic ‘1’, the LCDC module is busy and cannot accept any more command. PLCN
can send commands to LCDC only when this bit is ‘0’.
CCRM WDATA
Character Command Memory (CCRM) write data. The 36 bits are stored in a 36bits×32 on-chip
memory addressed by the CCRM ADDR signal.
CCRM ADDR
CCRM address. Users can write to CCRM addressed by this signal.
CCRM WR
Write control signal for CCRM . Users write data to CCRM by setting this signal to ‘1’ at a rising clock
edge.
CHRM WDATA
Character Memory (CHRM) write data. This memory is an 8bits×256 memory, which is used to save
character codes. Each character code is 8 bit wide in ASCII format.
CHRM ADDR
CHRM address. Users can write to CHRM addressed by this signal.
CHRM WR
Write control signal for CHRM . Users write data by setting this signal to ‘1’ at a rising clock edge.

Two dual port RAMs, CHRM (8bits×256) and CCRM (36bits×32) are used to control the displaying on
LCD screen. CHRM is used to store character codes; CCRM is used to store character commands (CCMD).
Dual port means each of these memories has two read/write ports which can be accessed at the same time.
Both CCRM and CHRM are synchronous RAM, and can accept pipelined read/write operations.

One of the ports of each memory (say, Port A of the dual port RAM) is connected to PLCN . Users can
write data into both memories to change the displaying on the LCD screen. Users write character codes that
are to be displayed on LCD, into the CHRM ; the CCMDs (display commands) are written into CCRM . The
other port, Port B, of both memories are used by LCDC internally.

Inside LCDC a circuit computes the addresses for all characters corresponding to the LCD screen
positions from the content (CCMDs, 36 bits) of CCRM . Then the character codes are read from CHRM
and are displayed on the LCD screen. This computing and displaying process is triggered when the REFRESH
command appears on the CMD bus. The format of the CCMD, consisting of V, CTR, CPOS, CLTH, CBAD, CSAD
and WLTH, is shown in Table 10.

Each entry defines a command to refresh a region on the LCD screen using the character codes saved
in CHRM . The maximal number of CCMDs saved in CCRM is 32, because the LCD can display only 32
characters. Each time when a REFRESH command is detected on the CMD bus, the LCDC reads all the entries
of the CCRM one by one. The corresponding displaying command from each entry is executed, if the V bit
is ‘1’ in this entry. If V=‘0’, the entry is ignored by LCDC . The algorithm to display characters on the LCD
screen is shown in the following code.

for each entry i in the CCRM {

MODULE SPECIFICATIONS 15

Name Bits Definition
V 35 Valid bit. If V=‘1’, the circuit inside the LCDC executes the command

defined in the other sections of this entry when a REFRESH command is
received. If V=‘0’, this memory entry is ignored.

34:32 Reserved.
CTR 31 Refresh direction. If CTR=‘0’, each time the character index on the LCD

screen is subtracted by 1 and the corresponding position on the LCD
screen is updated. If CTR=‘1’, the character index is added by 1 during
refreshing.

CPOS 30:26 The start character position on the LCD screen. The LCDC circuit dis-
plays the character codes read from CHRM from the CPOS, in the direction
defined by CTR.

CLTH 25:21 Character length. CLTH defines the number of the characters (CLTH+1) to
be refreshed on the LCD screen.

CBAD 20:13 The start address of the character storage section. When WLTH+1 char-
acters are read from the CHRM memory, the LCDC wraps back to the
address defined by CBAD to read the following character codes from CHRM .

CSAD 12:5 The address from which the LCDC starts to read character codes from CHRM .
WLTH 4:0 Wrap length. The LCDC circuit wraps to CBAD when WLTH+1 characters

have been read from the CHRM memory.

Table 10: CCMD definition

if V=‘1’ {
addr:=CSAD
lcdpos:=CPOS
for j in 0 to CLTH {

display CHRM(addr) on LCD at position lcdpos
if CTR=‘0’ {

if lcdpos = 0 {
lcdpos:=31

}
else {

lcdpos:= lcdpos-1
}

}
else {

if lcdpos = 31 {
lcdpos:=0

}
else {

lcdpos:= lcdpos+1
}

}

if addr = CSAD+WLTH {
addr:=CBAD

}
else {

addr:=addr+1
}

}
}

}

The default value of the 36 bits of the first entry in the CCRM is 0x883E0001F. The V bits of all the
other entries are set to ‘0’ by default.

When the command on the CMD bus is CLEAR, all the character codes in the CHRM are filled with 0x20,
which is the ASCII code for the space character. Be noted that this command does not refresh the LCD

16 MODULE SPECIFICATIONS

screen. To clear the LCD screen an additional REFRESH command needs be issued.
During executing any command the BUSY signal is set to ‘1’ by the LCDC to indicate that the current

state of LCDC is busy and no more command should be sent.
In short, users can modify the content of CCRM and CHRM to provide different display solutions

(for example, screen scrolling). The LCD screen is updated using the instructions in the CCRM and the
character codes in the CHRM by sending the REFRESH command.

The character codes in CHRM are in ASCII format. For example, to display the character ‘a’, 0x61
should be written into CHRM . The ASCII codes are listed in Table 11.

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ’ p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ’ 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L \ l |
D CR GS - = M] m }
E SO RS . > N ˆ n ∼
F SI US / ? O o DEL

Table 11: ASCII table

3.4 Decoder Specification
Figure 4 shows the internal structure of the decoder. The MP3 decoder reads MP3 data from its input
buffer (DBUF) and decodes them to PCM samples, which are written to an output sample buffer (SBUF).
The AC’97 chip is configured and controlled through the hardware configuration instruction buffer (IBUF).
During play process, the AC’97 chip reads PCM samples from SBUF automatically and plays them using
the configured sample rate and sample format by the decoder. When DBUF is empty, the decoder has no
MP3 data to decode and cannot write valid samples to SBUF. In this case, the decoder keeps waiting for
the next valid DWORD in the DBUF unless the DEC RST signal is valid. When SBUF is empty, the AC’97
chip plays all ‘0’s as the PCM sample. After power on the decoder starts a decoding process automatically.

PL
C

N

IBUF

Config CTRL

DBUF

AC’97 Chip

MP3 data

MP3 Decoder

SB
U

F
D

E
C

decoder status/control

DBUF status/control

SBUF status/control

AC’97 instructions

IBUF status

Figure 4: The structure of the MP3 decoder

MODULE SPECIFICATIONS 17

Signal Name Width Direction (decoder view)
DBUF ALMOST FULL 1 out
DBUF WR 1 in
DBUF DIN 32 in
DBUF RST 1 in
SBUF FULL 1 out
SBUF EMPTY 1 out
SBUF RST 1 in
HW FULL 1 out
HW WR 1 in
HW DIN 32 in
DEC RST 1 in
DEC STATUS 1 out

Table 12: Interface signals of the decoder module

The interface signals of the decoder module to the PLCN module are listed in Table 12.
DBUF ALMOST FULL
When DBUF ALMOST FULL is ‘0’, the DBUF can accept at least 256 DWORDs. This signal is used
to trigger the monitoring process, which fills the DBUF with the MP3 data regularly. When the
DBUF ALMOST FULL is ‘0’ during the play process, a 256 DWORD data block (or less) should be requested
to fill DBUF, so that the fluent playing process can be maintained. After power on, the DBUF is empty
and DBUF ALMOST FULL is ‘0’.

18 MODULE SPECIFICATIONS

DBUF WR
Write enable of the DBUF. When this signal is ‘1’ at a rising clock edge, the data on the DBUF DIN is
written into DBUF at the same rising clock edge.
DBUF DIN
Input data bus of the DBUF.
DBUF RST
This signal clears the data in the DBUF. If this signal is ‘1’ at a rising clock edge, the DBUF will be
cleared to empty and the DBUF ALMOST FULL will be ‘0’ at the next rising clock edge. DBUF RST should
be only one clock period ‘1’ to clear the DBUF.
SBUF FULL
The full status of the SBUF. When SBUF FULL=‘1’, the SBUF is full.
SBUF EMPTY
SBUF EMPTY=‘1’ means there is no data in the SBUF; otherwise there is at least one PCM sample in
SBUF. When SBUF is empty, the AC’97 chip plays all ‘0’s as the PCM sample automatically.
SBUF RST
This signal clears the decoded samples in the SBUF. If this signal is ‘1’ at a rising clock edge, the SBUF
will be emptied. The SBUF FULL will be ‘0’ and SBUF EMPTY will be ‘1’ at the next rising clock edge.
SBUF RST should be only one clock period ‘1’ to clear the SBUF.
HW FULL
The full status of the decoder instruction buffer (IBUF). When HW FULL=‘1’, the buffer is full and
cannot accept more instructions. Otherwise IBUF can accept at least one more instruction.
HW WR
Write enable of the IBUF. When this signal is ‘1’ at a rising clock edge, the instruction on the HW DIN
at the same rising clock edge is written into the IBUF.
HW DIN
Instruction data bus of the IBUF. Bit 31 of this vector is the command valid bit. If this bit is ‘1’, this
command is a valid command. Otherwise, this command is simply ignored by the decoder. Bits 28 to
30 of HW DIN contain the command of the instruction. Currently only two commands are supported:
“000” is the change volume command; “001” is the pause command; all the other values are ignored
by the decoder.
When the command is “000”, the value of bits 0 to 4 of HW DIN is the volume of the right channel of the
player; the value of the bits 8 to 12 is the volume of left channel of the player. The maximal volume
is “00000” and the minimal volume is “11111”. The default volume of the player is “00000”. Bit 15
of HW DIN is the mute control bit. When this bit is ‘1’, both the left and right channels are muted so
that no sound can be heard, but the decoding and playing process is still ongoing. After power on, the
default mute state is unmute.
When the command is “001”, the player toggles its status between pause and playing. During the
paused state, the decoding and playing process is stopped and the AC‘97 chip plays all ’0’s so that no
sound can be heard. The default pause state of the player is playing.
DEC RST
If this signal is ‘1’ at a rising clock edge, the decoder is informed to stop its current decoding loop and
initialize for the decoding of the next MP3 file. DEC RST should be only one clock period ‘1’ to reset the
decoder.
DEC STATUS
This signal reflects the internal reset status of the decoder. When the decoder detects the DEC RST
signal is ‘1’ at a rising clock edge, it starts to reinitialize itself and sets the DEC STATUS to ‘1’ instantly.
After the reinitialization the DEC STATUS signal is switched back to ‘0’, which means a new play process
is started and the decoder starts to read the MP3 data from the DBUF.
During the reinitialization of the decoder, it firstly writes the internal cached decoded samples to SBUF,
then clears its own internal buffers and finally starts reading DBUF again. In short, the decoder may
write some data to SBUF when DEC STATUS=‘1’.
When the DEC STATUS is ‘1’, MP3 data should not be written into the DBUF and hardware configuration

instructions should not be written into the IBUF. The default value of this signal is ‘0’. Be noted that the
DBUF and SBUF are not cleared during the reinitialization of the decoder.

VHDL DESIGN GUIDELINES 19

4 VHDL Design Guidelines
In this section some VHDL design guidelines are listed. Abiding by these rules can benefit the simu-
lation and the design consistence. Be noted that for ASIC and FPGA designs, some design rules may
differ. But most of the rules are common to both design types. The rules listed below are specified for
FPGA design. reset state and clk polarity in the code examples are constants and defined in $HOME/prj/
comp def/system constants.vhd .
1. Use the AFTER statement carefully

AFTER statement might cause mismatch between simulation and the synthesized netlist, if the time
parameter is larger than one clock period. To write RTL level code, do not use the AFTER statement.

2. Avoid gated clocks unless absolutely necessary
The clock and asynchronous reset/set signals are routed by dedicated global wires. The number of the
global wires is very limited. If some logic gates appear in the path of the global wires, a new global
wire may be needed to route the gate output forwardly. In this case the placement&routing tool must
spend more time to route all these global routings, and possibly there are no enough resources to fulfill
the complete routing task.

3. Avoid latches unless absolutely necessary
Latches cause potential problems for static timing analysis and testability.

4. Complete reset is mandatory for sequential processes
No logic gates should appear on the reset path. The incomplete reset below generates an inverter at
the asynchronous reset path, which should be avoided.

reg: process (clk, res)
begin -- reg

if res=reset_state then --<- reset branch
outbit1 <= ‘0’; --<- reset branch
-- outbit2 <= ‘0’; --<- if this assignment is commented an inverter

-- is generated.
elsif clk’event and clk=clk_polarity then

outbit1 <= ctl;
outbit2 <= ctl;

end if;
end process reg;

5. Avoid internal three-state buses unless absolutely necessary
Internal three-state signals are difficult to handle at fabrication test and during constraining for logic
synthesis. An alternative is to use a multiplexer solution. But this may result in high wire areas and
problems during routing, depending on the number of channels. Use internal three-state buses only
if such routability problems are obvious. Generate three-state buffers using the following concurrent
statement:

bus <= ram_dat when ena = enable_state else (others => ‘Z’);

Not all FPGA structures contain internal tri-state buffers so that the usage of tri-state buses should
be avoid in FPGA designs. For the chip level bidirectional pins, which are used to communicate with
other external chips, for example the data bus of a RAM chip, the tri-state buffers should be directly
instantiated/described. The sub module which interfaces tri-state buffers should use three signals (input,
output and enable) and connect them to the respective ports of the tri-state buffer instances.

6. Refer to the same clock edge
The mixture of rising edge and falling edge triggered flip-flops may cause timing analysis problems.
Special consideration should be given when mixed clock edges/signals are used.

7. Do not use combinational feedback loops
Combinational feedback loops are often the source of problems in tools relying on static timing infor-
mation.

8. Balance clock to delta accuracy
Gated clocks or clock assignments imply delta cycles in RTL models. This corrupts the memory function
or serially connected register processes (shift-registers). As an example the synthesis result of the
following VHDL description does not match simulation.

r1: process (mclk)

20 VHDL DESIGN GUIDELINES

begin
if mclk’event and mclk=clk_polarity then

dat <= d_i;
end if;

end process r1;
gclk <= mclk; --<- this infers one delta!
r2: process (gclk)
begin

if gclk’event and gclk=clk_polarity then
d_o <= dat;

end if;
end process r2;

Generally all registers should be directly clocked by the same signal in the respective clock domain. Do
not assign the original clock signal to another signal.

9. The assignment of a signal should appear only in one process
The motivation for this recommendation is to avoid multi-driver errors. These may easily occur if a
signal of resolved type is assigned twice.

reg: process (clk, reset)
begin -- reg

if reset=reset_state then
output <= ‘0’;

elsif clk’event and clk=clk_polarity then
output <= ctl; --<--------------------,

end if; \
end process reg; |
-- ... --<- lots of code here |
output <= ctl; --<- overlooked, that ‘output’ has

-- been assigned before

The result of such description is an unintended multi-driver in the synthesized netlist as well as simulation
behavior.

10. All combinational conditional assignments should be checked for completeness
Incomplete combinational conditional assignments lack a default statement or an else clause. This may
lead to unintended latch inference from non-clocked processes.

latch: process (en, pn_gen_ssrg_outbit)
begin

if en=‘1’ then
outbit <= pn_gen_ssrg_outbit;

end if;
end process latch;

To avoid this problem, always use an else branch:

combo: process (en, pn_gen_ssrg_outbit)
begin

if en=‘1’ then
outbit <= pn_gen_ssrg_outbit;

else
outbit <= other_value;

end if;
end process combo;

or a default assignment in front of the conditional structure:

combo: process (en, pn_gen_ssrg_outbit)
begin

outbit <= other_value;
if en=‘1’ then

VHDL DESIGN GUIDELINES 21

outbit <= pn_gen_ssrg_outbit;
end if;

end process combo;

11. Use standard templates for clocked processes

async_res: process (clk, rst)
begin

if rst=reset_state then
<actions_to_perform_at_async_reset>

elsif clk’event and clk=clk_polarity then
<actions_to_perform_at_pos_clock_edge>

end if;
end process async_res;

Clock and asynchronous reset must be in the sensitivity list to avoid that the simulation result mis-
matches the behavior of the circuit after pre- and post-synthesis. The reset state is a one-bit constant
defined by the system designer.

sync_res: process (clk) --<- synchronous reset (rst_sync) should not
begin -- be in sensitivity list

if clk’event and clk=clk_polarity then
if rst_sync=‘0’ then
<actions_to_perform_at_sync_reset>

else
<actions_to_perform_at_pos_clock_edge>

end if;
end if;

end process sync_res;

12. Minimize the number of signals of the sensitivity list
Minimize the number of signals of the sensitivity list so that processes are only activated when a re-
evaluation of the outputs is required. For synchronous circuit the clock signal is required in the sensitivity
list. If asynchronous reset exists, the reset should also be in the sensitivity list. Except the clock and
reset signals, no other signals can present in the sensitivity list of a synchronous circuit.

22 DISPLAYING FILE NAMES

5 Displaying File Names
In this section the displaying file name function of the play control (PLCN) module will be implemented.
The PLCN module reads the file information through the FIO module, then displays the file name on the
LCD screen through the LCDC module (see Figure 2).

5.1 KBC Interface
The KBC module provides an FIFO (First In First Out) output interface to PLCN. When keys on the
keypad are pressed, the respective scan codes are saved in this FIFO inside the KBC module. These keys
should be read and used to activate the respective function blocks in PLCN.

The KBC FIFO output interface has 4 signals specified in Section 3.1. The empty shows the status of
this FIFO. When rd is ‘1’ at a rising clock edge, a valid read command is sent to KBC. When rd ack is ‘1’
at a rising clock edge, a valid key scan code is on the 8bit data bus. When the FIFO is empty (empty=‘1’),
no valid rd ack will be returned even though rd is valid.

In the MP3 system, the key scan codes are read instantly from the FIFO, once it is not empty. The
empty signal is directly connected to the rd across an inverter. The key scan codes from the KBC module
are used to activate different function modules. 0x72 and 0x75 are the scan codes of keys ‘2’ (also ‘↓’) and
‘8’(also ‘↑’), which are used to list the next file name and the previous file name. When a ‘↓’/‘↑’ key is
detected, the corresponding signal listnext/listprev is generated to trigger the list block.

8bit Comparator

0x75

0x72

key_empty

key_data

key_rd_ack

key_rd

listprev

listnext

Figure 5: Key code comparator

Exercise 1:

Please describe the circuit in Figure 5 as a VHDL entity. The entity definition and input/output signals are
listed in Code 1.

5.2 Reading File Information
File information of the FAT16 file system is listed in Table 7. The file information can be fetched from the
FIO module by issuing the FILENEXT/FILEPREV commands through the BUSI/BUSIV/CTRL signals of
the FIO module.

A state machine is used to control the signals to the FIO module. Figure 6 shows the basic structure
of a state machine, which consists of three components: the state register, the next state logic and the
output logic. State diagram is normally used to represent the transitions and the output functions of a state
machine. Each state in the state machine is represented by a node and each transition by an arc. Figure 7
shows an example of such a state diagram with s k as the default state after reset. The arc from node s k
to node s j with label ‘1’/‘1’ (the first ‘1’ is the input condition; the second ‘1’ is the output) specifies that,
for the present state s k and the input ‘1’ , the next state is s j and the output is ‘1’ .

A general form of state machine can be described using three VHDL processes, corresponding to the
three components in Figure 6. The output process and the state transition process are both combinatorial
and generate the output values and the next state using the current states and input values respectively.
The sequential process saves the next state to flip-flops so that it can be used as current state at the next
clock edge.

DISPLAYING FILE NAMES 23

library ieee;
use ieee.std_logic_1164.all;

entity commandcomparator is
port(

rd : out std_logic;
rd_ack : in std_logic;
data : in std_logic_vector(7 downto 0);
empty : in std_logic;
listnext : out std_logic;
listprev : out std_logic
);

end commandcomparator;

architecture commandcomparator_arch of commandcomparator is
--define signals here

begin
--describe the circuit here

end architecture;

Code 1: Key code comparator

Logic
Output

Resigsters
State

Clk

Next_State

Current_State

Logic
Next_State

Inputs Outputs

Figure 6: Block diagram of a finite-state machine

’1’/’0’s_k s_j’0’/’0’

’1’/’1’

’0’/’0’

reset

Figure 7: State diagram representation

Exercise 2:

Please describe the state machine shown in Figure 8 and the circuit for busi . The input and output ports of
this entity are defined in Code 2. info ready is defined in Section 5.4. The default state after reset is idle.
Only the transition conditions are shown on the transition arcs. Each transition arc is referred with a name,
as A* in Figure 8.
The values of the output signals are explained below:

req is the interface request signal connected to the arbiter described in Section 5.3 to get the access of
the FIO module. The interface of the FIO module is shared by several blocks, e.g. the list block and
the play block in Section 6.1. When the req signal is ‘1’, the list block informs the arbiter that it needs
the interface. The arbiter decides the value of the corresponding gnt signal according to the values of
all the gnts and their priorities. If the gnt signal of a block is ‘1’, this block is granted to use the FIO
interface. req is ‘0’ at arc A1 and A6 and ‘1’ at the other arcs.
busiv is the signal to designate that the data/command on the busi signal is valid. busiv is ‘1’ at arc

24 DISPLAYING FILE NAMES

A4 and ‘0’ at the other arcs.
ctrl designates the meaning of busi . ctrl=‘1’ means the current value of busi is a command. ctrl=‘0’
means the current value of busi is a parameter. ctrl is ‘1’ at arc A4 and don’t care at the other arcs.
info start informs the other blocks in the PLCN module that the list command is sent to the FIO
module. The next data from FIO will be file information. This signal will clear the file information
counter in Section 5.4. info start is ‘1’ at arc A4, and ‘0’ at the other arcs.

busi is the data/command to the FIO module. At arc A4 this signal should have the value 0x“00”/0x“01”
when listing the next/previous file. The busi signal is the output of a register instead of the state machine
and is updated only at arc A2.

winfo wrdy

idle

A3

listnext=’0’ and listprev=’0’

info_ready=’0’

A5

A1

A4

A2A6info_ready=’1’ listnext=’1’ or listprev=’1’

gnt=’1’ and fio_busy=’0’

gnt=’0’ or fio_busy=’1’

reset

Figure 8: Displaying file information state machine

library ieee;
use ieee.std_logic_1164.all;

entity listctrl is
port(

clk : in std_logic;
reset : in std_logic;
listnext : in std_logic;
listprev : in std_logic;
req : out std_logic;
gnt : in std_logic;
busi : out std_logic_vector(7 downto 0);
busiv : out std_logic;
ctrl : out std_logic;
busy : in std_logic;
info_start : out std_logic;
info_ready : in std_logic
);

end listctrl;

Code 2: Port definition of the state machine of the displaying function

5.3 Arbiter&Multiplexer
The FIO module is used by several blocks in the PLCN module. In order to avoid bus collision, an arbiter and
a multiplexer are implemented to coordinate the access of the FIO interface. Figure 9 shows the diagram
of the arbiter and the multiplexer. The ith input signal vector (0 ≤ i ≤ N − 1) is input(M ∗ (i + 1) −
1 downto M ∗ i), where M and N are generics.

Each block which uses the FIO interface has a req signal. This signal is connected to a bit of the
req signal of the arbiter. The arbiter decides which block can get the bus access and informs it by the
corresponding bit of the gnt signal. Only after the block which is currently holding the bus finishes its
operation and releases the bus by setting its req to ‘0’, can the next block get the bus access, i.e. non-
preemptive arbitration. Several blocks can request the bus access at the same time, but they are granted

DISPLAYING FILE NAMES 25

Arbiter
req(N−1 downto 0)

gnt(N−1 downto 0)

gnt

output(M−1 downto 0)

1
0

N−1

input(M−1 downto 0)
input(M*2−1 downto M)

input(M*N−1 downto M*(N−1))

input(M*N−1 downto 0)

M
ul

tip
le

xe
r

Figure 9: The diagram of the arbiter and multiplexer

one after another, depending on the priority of the req bits they connect. The req(0) has the highest priority
and the req(N-1) has the lowest priority.

Figure 10 shows the diagram of the arbiter. The AND and NOR gates in Figure 10 are used to check if
the block which currently holds the interface has released the bus by changing its req to ‘0’. The gnt signal is
used as a mask to bitwise ‘AND’ the req signals (see the AND gate in Figure 10). All the bits after the AND
gate are ‘ORed’ together and the inverted signal is used as the enable of the register (see the NOR gate in
Figure 10). If the current granted block releases the bus control, the next grant value from the arbitration
logic is assigned to the gnt at the output of the register. The arbitration logic decides which logic will get
the valid grant signal based on the current values of their req signals and the priorities of them. gnt(i) can
be decided by

if i=‘0’ then
gnt(0)<=req(0);

else
gnt(i)<=not (req(0) or req(1)...or req(i-1)) and req(i);

endif;

gnt(N−1 downto 0)

Arbitration

Logic

clk

reset

req(N−1 downto 0)
mo

mo(0)

.
mo(1)..

QD

CE

mo(N−1)

Figure 10: Arbiter structure

Because the arbitration logic is non-preemptive, flip-flops with enable pin are used to store the cur-
rent gnt value. The output of the flip-flops are updated only when the enable signal is valid. Code 3
shows a template to describe such a flip-flop, where reset state and clk polarity are constants and defined in
$HOME/prj/comp def/system constants.vhd .

process(clk, reset)
begin

if reset=rest_state then
--insert the reset statements here

elsif clk’event and clk=clk_polarity then
if enable=enable_state then --this ’if’ has no matching ’else’

--insert logic before the flip-flop
end if;

end if;
end process;

Code 3: DFF with enable

26 DISPLAYING FILE NAMES

After a block gets the FIO access, its output signals to the FIO module should be selected by the
multiplexer to its output, which is connected to the FIO interface directly. The gnt(N-1 downto 0) is used
as the select signal of the multiplexer. output(j), where j=0,1,· · · ,M-1, can be decided by

output(j)<=(gnt(0) and input(0*M+j)) or (gnt(1) and input(1*M+j))...
or (gnt(N-1) and input((N-1)*M+j));

Exercise 3:

Please describe the arbiter and multiplexer using generics M and N. The entity is illustrated in Code 4.

library ieee;
use ieee.std_logic_1164.all;

entity arbitermultiplexer is
generic(

M : integer;
N : integer
);
port(

clk : in std_logic;
reset : in std_logic;
input : in std_logic_vector(M*N-1 downto 0);
output : out std_logic_vector(M-1 downto 0);
req : in std_logic_vector(N-1 downto 0);
gnt : out std_logic_vector(N-1 downto 0)
);

end arbitermultiplexer;

Code 4: Port definition of the arbiter&multiplexer

5.4 Receiving File Information
When the FIO module receives the FILENEXT/FILEPREV command, it returns the 32 bytes file informa-
tion (see Table 7) through the fio buso and fio busov signals. When fio busov=‘1’ at a rising clock edge,
the corresponding fio buso is valid. The 32 bytes file information are sent in the same order as defined in
Table 7 by 8 DWORDs. There may be intervals between these returned DWORDs, where the fio busov is
‘0’ because the FIO block needs some time to load further data from the external CF card.

The first 11 bytes are the file name in the old 8:3 MS-DOS format. The first 8 bytes contain base file
name, and the next 3 bytes are the file extension name. There is no “.” in the file name, which is added by
the OS automatically. The file name should be displayed on the 16×2 LCD. In this section the instructions
to display the file name at the first 11 character positions of the LCD will be given.

The LCD controller used in this project provides two RAM interfaces: CHRM and CCRM . CHRM
is an 8bits×256 RAM, which can save 256 characters. CCRM is a 36bits×32 RAM, which controls which
characters from the CHRM should be displayed on which positions on the LCD screen. The lcdc cmd signal
controls the refreshment of the LCD. When lcdc cmd=“10”, the algorithm described in Section 3.3 is used
to update the LCD screen. lcdc cmd command can be sent only when the lcdc busy signal is ‘0’. Figure 11
shows the diagram of displaying file names.

The 4-bit Data Counter is used to count the DWORD number of the file information. This counter is
reset to “1000” using the global reset signal. When the info start signal from the state machine in Code 2
changes to ‘1’, which means the coming data from FIO is file information, the counter is cleared to 0. Each
time when the fio busov is ‘1’ at a rising clock edge, the counter increases 1. When the counter reaches 8, it
will not increase but keep its old value because all file information has been received. Each time when the
fio busov is ‘1’ and the data counter is less than 3, the output DWORD on the fio buso bus is registered by
flip-flops in the 12-byte register, from which the first 11 bytes are used to save file names. These file name
bytes are sent to LCDC for displaying. When the Data Counter is 7 and fio busov is ‘1’, fio buso contains
the file size, which is registered and will be used in the play function to decide the file end. Code 5 shows
an example of the data counter with asynchronous reset.

DISPLAYING FILE NAMES 27

LCDC

SEL Refresh CTRL

D
at

a
C

ou
nt

er

REG
12byte

FI
O

fi
le

_s
iz

e

REG

fio_busov

fio_buso

lc
dc

_c
m

d

ch
rm

_w
da

ta

info_start

lc
dc

_b
us

y

ch
rm

_a
dd

r

ch
rm

_w
r

info_ready

Figure 11: File name displaying

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

...
signal counter : std_logic_vector(3 downto 0);
...

process(clk, reset)
begin

if reset = reset_state then
counter <= "1000"; --asynchronous global reset

elsif clk’event and clk = clk_polarity then
if info_start = ‘1’ then --synchronous reset

counter <= "0000";
elsif busov = ‘1’ and counter/="1000" then

counter <= counter+1;
end if;

end if;
end process;

Code 5: Counter template

When the Data Counter changes from 7 to 8, the valid info ready is generated to inform the state
machine in Figure 8 to release the FIO interface. At the same time, info ready is used to trigger the process
to update the LCD screen. Code 6 shows the code to generate info ready .

After the file information is received, the Refresh CTRL block is triggered by the info ready signal
to write the file name into the CHRM and send the REFRESH command to LCDC. A refresh counter
(refcounter) inside the Refresh CTRL block is used to select the file name bytes sequentially and generate
the address of CHRM. The file name bytes should be written into the first 11 bytes of the CHRM to display
them on the first 11 positions of the LCD. The output of the refresh counter is connected to the four bits (3
downto 0) of chrm addr and the other bits of the chrm addr are ’0’s. The refcounter is set to “0000” when
the info ready is valid and increases 1 at each rising clock edge when its value is not “1011”, which is the
value set by the asynchronous reset. Refer Code 5 when describing the refresh counter. When the value of
the refresh counter is less than “1011” the chrm wr signal is ‘1’ to write the file name bytes to CHRM.

A case statement can be used to select the saved file name bytes to chrm data. Code 7 shows the case
example.

After the file name bytes are written to the CHRM, the REFRESH command should be sent to LCDC

28 DISPLAYING FILE NAMES

library ieee;
use ieee.std_logic_1164.all;

...
signal count3 : std_logic;
...

process(clk, reset)
begin

if reset = reset_state then
count3 <= ‘1’;
info_ready <= ‘0’;

elsif clk’event and clk = clk_polarity then
count3 <= counter(3);
if count3 = ‘0’ and counter(3) = ‘1’ then

info_ready <= ‘1’;
else

info_ready <= ‘0’;
end if;

end if;
end process;

Code 6: Detect counter switch

case refcounter(3 downto 0) is
when "0000" =>

chrm_wdata <= filenamereg(7 downto 0);
when "0001" =>

chrm_wdata <= filenamereg(15 downto 8);
when "0010" =>

chrm_wdata <= filenamereg(23 downto 16);
when "0011" =>

chrm_wdata <= filenamereg(31 downto 24);
when "0100" =>

chrm_wdata <= filenamereg(39 downto 32);
when "0101" =>

chrm_wdata <= filenamereg(47 downto 40);
when "0110" =>

chrm_wdata <= filenamereg(55 downto 48);
when "0111" =>

chrm_wdata <= filenamereg(63 downto 56);
when "1000" =>

chrm_wdata <= filenamereg(71 downto 64);
when "1001" =>

chrm_wdata <= filenamereg(79 downto 72);
when others =>

chrm_wdata <= filenamereg(87 downto 80);
end case;

Code 7: File name byte selection

to update the file name on the LCD screen. This command should be sent only when the lcdc busy signal
is ‘0’. The REFRESH command should last only one clock period. The code example in Code 8 is used to
generate the lcdc cmd signal.

Exercise 4:

Please analyze the waveform of the signals chrm ready and lcdc cmd in Code 8.

DISPLAYING FILE NAMES 29

library ieee;
use ieee.std_logic_1164.all;

...
signal chrm_ready : std_logic;
...

process(clk, reset)
begin

if reset = reset_state then
chrm_ready <= ‘0’;

elsif clk’event and clk = clk_polarity then
if lcdc_cmd = "10" then

chrm_ready <= ‘0’;
elsif refcounter = "1010" then

chrm_ready <= ‘1’;
end if;

end if;
end process;

process(clk, reset)
begin

if reset = reset_state then
lcdc_cmd <= "00"; --no command

elsif clk’event and clk = clk_polarity then
if lcdc_cmd = "10" then

lcdc_cmd <= "00";
elsif lcdc_busy = ‘0’ and chrm_ready = ‘1’ then

lcdc_cmd <= "10"; --refresh command
end if;

end if;
end process;

Code 8: Generate the REFRESH command

Exercise 5:

Please write the VHDL code of the complete file information processing block, based on the structure and
code described in this section.

5.5 Building the List Function
After finishing all the sub blocks of the displaying file name function, all these sub blocks are connected
together to form the PLCN module, which can be synthesized and tested in hardware. The instructions for
synthesis and implementation of the complete MP3 project can be found in Section 7.

Figure 12 shows the top structure and connections of the sub blocks. The file size signal is left uncon-
nected in the list function. The top entity of the PLCN module is given in the MP3 prj/playcontrol directory
with name playcontrol.vhd . If an output signal from the port definition of the PLCN module is not driven
in the list function, it should be connected to ‘0’s. All the unused input signals from the port definition of
the PLCN should be left unconnected.

When instantiating the arbiter&multiplexer module, the generics M and N are set to 10 and 3. The
signals from the state machine are connected to the port input(M ∗ 3− 1 downto M ∗ 2) of the multiplexer.
The other two ports are reserved for the play function and driven to all ‘0’s. The clock and reset signals are
global signals and are defined in the port of the PLCN module.

Exercise 6:

Please connect all the sub blocks of the list function using VHDL, as shown in Figure 12. The list function
can be tested using FPGA by following the instructions in Section 7.

30 DISPLAYING FILE NAMES

file information processing

 c
hr

m
_w

da
ta

 c
hr

m
_w

r

 c
hr

m
_a

dd
r

 lc
dc

_c
m

d

 lc
dc

_b
us

y

LCDC

ke
y_

em
pt

y

ke
y_

rd

ke
y_

rd
_a

ck

ke
y_

da
ta

gnt

ctrl

busi

busiv

in
fo

_s
ta

rt

in
fo

_r
ea

dy

busov

buso

busy

busiv

busi

ctrl

in
pu

t(
29

 d
ow

nt
o

20
)

req
req(2)

gnt(2)

PLCN

KBC

FIO

KBC interface

ar
bi

te
r&

m
ul

tip
le

xe
r

re
se

t

reset

clk

lis
tp

re
v

lis
tn

ex
t

re
se

t

re
se

t

fi
le

_s
iz

e

cl
k cl
k

cl
k

listctrl

Figure 12: Top structure of the list function

MAKING A SIMPLE MP3 PLAYER 31

6 Making a Simple MP3 Player
In this section, the play function of the MP3 player will be implemented. The file listed on the LCD screen
is decoded and the hardware is initialized to start the playing process. The additional functions, e.g. mute,
pause etc. should also be implemented.

6.1 Playing the Music
Figure 13 shows the structure of the PLCN module including the list and play functions, where not all but
a part of illustrative signals are shown. The real signal names can be defined according to Section 3.

List FSM

Play FSM

Monitor FSM

KBC Interface

KBC

Display CTRL

LCDC

fi
le

_s
iz

e

HW CTRL

M
ul

tip
le

xe
r

Arbiter

D
ec

od
er

&
A

C
’9

7

Dec_Status

MP3_data

FI
O

Dec_CTRL

fi
le

_s
iz

e
HW_CTRL

re
q

gn
t

Figure 13: Top structure of the PLCN module

The functions of the blocks are described below:
KBC Interface reads the key scan codes from the KBC FIFO and decodes them to generate control
signals, for example the listnext and listprev signals in the list function. In the play function the scan
codes of the keys ‘Esc’ and ‘Ctrl’ are decoded to generate signals to trigger the play start and play stop
functions.
PLAY FSM controls the start and end of the playing process. If the ‘Esc’ key is sent to the PLCN
module, this state machine sends the open command to FIO and enables the Monitor state machine
(Monitor FSM). During the playing process, the PLAY FSM stops the Monitor FSM when the key ‘Ctrl’
is pressed, or when the file end is reached.
Monitor FSM periodically checks the status of the MP3 Data buffer (DBUF) via its almost full signal
(dbuf almost full). If dbuf almost full signal switches to ‘0’, a read command is sent to the FIO module
so that additional MP3 data are requested from the FIO module and fill the MP3 data buffer. Because
the file information should not be written into the DBUF, the state of this FSM is also used to control
the enable of the writing to the DBUF.
During the playing process, the file end should be always checked before the READ command is sent.
Each time when a block data from FIO module is received, the read byte number is added to a read
counter, which is initialized with 0. When the read counter is equal to the file size, the file end is
reached. Thereafter the PLAY FSM should be informed to stop the Monitor FSM and return to the
idle state. The file size is a part of the file information and transferred from the FIO module to PLCN
when listing the file names.
Be noted that the unit of the file size is byte, but the unit to request data from the FIO module is
DWORD. If the file size is not at the DWORD boundary, the packed data in the last DWORD of the

32 MAKING A SIMPLE MP3 PLAYER

MP3 data returned from the FIO module can be safely written to DBUF. The decoder works fine when
the number of the garbage bytes is no more than 3.
HW CTRL generates the AC’97 control commands when it receives the corresponding key scan codes.

Exercise 7:

Please draw the state machine diagrams of the PLAY FSM and the Monitor FSM in the form of Figure 8.
Further information that may help can be found in the corresponding specifications.

Exercise 8:

Please implement the necessary blocks in Figure 13. These blocks and the blocks in Section 5 should be
connected together and tested in hardware. The resulted MP3 player should play MP3 music fluently.

6.2 Customizing the MP3 Player
After implementing the simple MP3 player, additional functions can be added to customize your MP3 player.
The following functions are supported by the the provided modules and the AC’97 hardware.

Mute;
Pause;
Fast forward/backward
Volume increase/decrease;
Display playing percentage;
Display playing state;
Display volume;
LCD display scrolling;

Exercise 9:

Please implement and test the additional functions listed above.

Exercise 10:

Please use your creativity to add more functions to your MP3 player.

Exercise 11:

(Optional) When you have downloaded your ’working’ design to the FPGA board, please try pushing a
button on the keyboard, e.g., the ’listprev’ button for a long time and then release, and then check if the
keyboard is still working properly. If you still don’t see the problem, do the long-time push again (could be
another button) until you see the problem. Think about the reason of the problem and correct the code in
the KBC module (in the directory $HOME/prj/ps2 kbc).
(Hint: The problem is that after you have done a long-time push on a button, a user command may always
trigger the response of the previous command. You need to check the PS/2 protocol and the code of the
KBC module to find out the problem.)

IMPLEMENTING THE MP3 SYSTEM 33

7 Implementing the MP3 System
In this section the instructions to synthesize the PLCN module and implement the complete MP3 system
will be given. Figure 14 shows the implementation structure of the MP3 player. Compared with Figure 2
the FIO and Decoder modules are implemented by the ppc core and ppc ctrl module together. The sysctrl
module implements the clock buffers and reset polarity correction. The test modules provides the soft cores
for the on-chip logic analyzer.

ppc_core

ppc_ctrl

PL
C

N
test_modulessysctrl

K
B

C

top_system
FIO/DEC/LCDC/HW

Figure 14: Project implementation structure

7.1 Simulating and Synthesizing the PLCN Module
In this section, the instructions to simulate and synthesize the PLCN (playcontrol) module will be given.

Create the playcontrol project
1. Open a terminal, start ISE: ise&
2. Select File → New Project...
3. Input playcontrol as the Project Name; $HOME/prj/playcontrol as the Project Location (Note:

Since the Project Location changes automatically when you are typing in the Project
Name, before you press the Next button, make sure the Project Location is
$HOME/prj/playcontrol, but not $HOME/prj/playcontrol/playcontrol);
then press the Next button.

4. Select Family Virtex2P; Device XC2VP30 ; Package FF896 ; Speed -7 ; Synthesis Tool XST (VHDL/
Verilog); Simulator ModelSim-SE Mixed ; Preferred Language VHDL. Press Next three times; Then
check your project specification and press Finish. The FPGA type is the same as the chip used on
the test board.

Create/Add existing source files to the playcontrol project
1. Click the right mouse button in the Sources window. Select Add Source. Then select playcon-

trol.vhd . Click Open then OK . The content of this file can be viewed by double clicking it. The
exercises can be directly done in this file, or additional VHDL files can be added in this project for
sub-module description, which should be instantiated in playcontrol.vhd . Another VHDL source
file $HOME/prj/comp def/system constants.vhd should also be added into the playcontrol project.
The constants reset state and clk polarity are defined in this file. To view the content of this package
file, select the Libraries window, then double click the file name under the work entry.

2. To create a new VHDL source file, right click in the Sources window, select New Source, then input
the name of the source file and select the source type as VHDL Module. To use the macros from
Xilinx, e.g. multiplier and divider, the source type should be IP (Coregen & Architecture Wizard).
For detailed instructions to use the macros from Xilinx, please refer the core generator user guide.

Simulate the playcontrol module
In this lab a simple testbench (playcontrol tb.vhd) is provided to simulate the playcontrol module. This
testbench tests only the list and play function. To test the extended functions, more test cases should
be added to playcontrol tb.vhd . The VHDL simulation can be done by directly creating a ModelSim
project. There are tutorials about the usage of ModelSim in index.html . Another way to do simulation
is to start ModelSim from the ISE project.

34 IMPLEMENTING THE MP3 SYSTEM

1. Add the playcontrol tb.vhd testbench file to the playcontrol project.
2. Select Behavioral Simulation from the Sources for: drop-down list.
3. Select the testbench in the Sources window, then double click the Simulate Behavioral Model in

the Processes window. For further instructions to use ModelSim please refer the tutorials.
Create the timing constraints
Timing constraints should be added just before running synthesis. Timing constraints are used by
synthesis tool to judge if a circuit path should be optimized. In digital circuit design, timing constraints
mostly stand for clock periods, which are decided by the design specification. The clock frequency for
the playcontrol module is 32Mhz, the same frequency as the oscillator Y4 on the VirtexII Pro board
used in this lab. To create the timing constraints for the playcontrol module:
1. Select Implementation from the Sources for: drop-down list.
2. Select the playcontrol entry in the Sources window.
3. Click the ‘+’ symbol at the left side of the User Constraints entry in the Processes Window, then

double click the Create Timing Constraints entry. Then select Yes in the appeared window.
4. In Xilinx Constraints Editor, click the Global tab, then double click the Period cell in the clk entry.
5. In the clock period editor, specify the clock period as time 31.25 ns, then click OK and close the

constraints editor.
Synthesize the playcontrol module
1. Select Implementation from the Sources for: drop-down list.
2. Select playcontrol in the Sources window, then right click on the entry Synthesis - XST in the

Processes window, select Properties. In the Synthesis Options window, select Xilinx Specific Options
at the left side. Then deselect the Add I/O Buffers Option. The reason of doing this is that the
playcontrol module is a sub module in the MP3 project and it has no direct external pin on the
FPGA. If I/O buffers are generated for a sub module, there will be errors during the implementation
of the top level of the design.

3. Select playcontrol in the Sources window, then click the ‘+’ symbol at the left side of the entry
Synthesis - XST , thereafter double click the View Synthesis Report entry. This will start the
synthesis of the playcontrol module. When the synthesis process is finished, the synthesis report
will be displayed in the right side window.

Check the synthesis report
1. No warning like “The following signals are missing in the process sensitivity list”.
2. No warning like “Found latch for signal ...”.
3. Other warning come mostly from circuit optimization and can be safely ignored.

7.2 Implementing the Complete MP3 System
In the MP3 system, all the sub modules except PLCN in Figure 14 are given. The MP3 project uses
hierarchical design style. Every sub module has its own directory and project. The top system design
searches and integrates the synthesized sub modules in the specified paths. All the sub modules are connected
together in the top system.vhd file. Note: Before running the implementation of the top system,
the synthesis of the playcontrol module should be rerun, if there is any change in the playcontrol
project.

1. Create a project with the name top system in the $HOME/prj/top system directory in the same
way as creating the playcontrol project (Note: Make sure the Project Location is
$HOME/prj/top system, but not $HOME/prj/top system/top system), but do not deselect the
Add I/O Buffers option in the synthesis properties.

2. Add the top system.vhd source file to the project.
3. Add

playcontrol component pkg.vhd, ps2 kbc component pkg.vhd, ppc core component.vhd,
ppc ctrl component pkg.vhd, sysctrl component pkg.vhd, system constants pkg.vhd,
test modules component pkg.vhd
to the top system project. These files contain the component definitions of the sub modules and
the system constants. The directory for these source files is $HOME/prj/comp def .

4. Add the macro search paths to the project. Select Implementation from the Sources for: drop-down
list. Select the top system entry in the Sources window. In the Processes window, right click on the
entry Translate under the Implement Design entry and select Properties. In the Process Properties

IMPLEMENTING THE MP3 SYSTEM 35

- Translate Properties window, select Advanced from the Property display level drop-down list.
In the Other Ngdbuild Command Line Options cell type in -sd ../playcontrol -sd ../ppc ctrl -sd
../ppc core/implementation -sd ../ps2 kbc -sd ../sysctrl -sd ../test modules, or select those paths
one by one by pressing the +... button in the Macro Search Path cell. These paths are the the
locations of the sub modules.

5. Add the top system.ucf constraints file to the project. The timing constraints and pin locations
are actually saved in this constraints file.

6. Create the timing constraints for the following clocks:

Signal Name Description Frequency
ext ace clk main system clock 32MHz
ps2 clk PS/2 keypad interface clock 16.7KHz
bit clk AC’97 clock 12.288MHz
ext cpu clk PowerPC clock 100MHz

Table 13: Clock specifications

7. The input/output/inout signals of the top system design are connected to the other chips on the
board through wires, which means the signals of the design should be assigned to corresponding pin
locations on the FPGA. The I/O standard and the driving strength should also meet the electrical
characteristics of the other chips. Instead of using the graphical interface to fulfill these tasks,
a part of the constraints (others are already set in the constraints file) can be added by directly
editing the constraints file. To open the constraints file, select Edit Constraints (Text) in the under
the User Constraints entry in the Processes window.
In top system.ucf , LCD DB<4> to LCD DB<7> and ext ace clk are not assigned to proper loca-
tions and standards. These constraints should be added by referring the assignments of the similar
signals in the constraints file. The locations for these pins are below:
LCD DB<4>: P9; LCD DB<5>: N2; LCD DB<6>: M4; LCD DB<7>: R9; ext ace clk: AH15
Be noted that the clock pin must be assigned to some special pins on the FPGA. Please refer
the documents from Xilinx when designing new projects. The definitions and the formats of the
different constraints can be found in the Constraints Guide in index.html .

8. The synthesis and placement&routing of the MP3 design should be executed to generate the bit-
stream, which can be downloaded to the FPGA for hardware testing. To run these steps, double
click the Generate Programming File entry in the Processes Window. Thereafter all the implemen-
tation steps will be run automatically.

7.3 Testing the MP3 Player
1. The following steps should be performed to download the generated bitstream to the FPGA chip

for testing. Power on the board (the power switch is beside the SVGA output); run command
./MP3download in the directory $HOME/prj/top system. This script download the bitstream file
top system.bit in the current directory and the PowerPC image for the ppc core module. After
downloading successfully, the MP3 design is ready for testing.

2. During testing the play function, if there is no any sound, check if the audio cable is correctly
connected and if the loudspeaker of the monitor is muted. If both have no problem, the design of
the playcontrol module should be reviewed.

3. The decoded MP3 music files on the Compact Flash card can be found on the lab website. To play
a decoded cdr file on PC, issue the command: play filename.

4. Four LEDs on the PCB board are used to indicate the status of the decoder.
LED0: dbuf empty; LED1: dbuf almost full; LED2: sbuf empty; LED3: sbuf write

5. If the download by issuing the ./MP3download command fails, use the following steps to solve the
problem:
Check if the USB cable to the PCB board is correctly connected; issue the command clean cablelock ;
if the bitstream still can not be downloaded, turn off the power supply of the board, and turn on
it again after some seconds.

6. The IP cores of the on-chip logic analyzer ChipScope is already implemented in top system.vhd .
The ChipScope software can be invoked with the command start analyzer&. Please refer to the
ChipScope User Guide for instructions on using ChipScope.

	Contents
	0 README
	1 Introduction
	1.1 VLSI Design Flow
	1.2 VHDL

	2 Lab Overview
	2.1 System Structure
	2.2 Hardware

	3 Module Specifications
	3.1 {fam slfam 	ensl KBC/} Specification
	3.2 {fam slfam 	ensl FIO/} Specification
	3.3 {fam slfam 	ensl LCDC/} Specification
	3.4 Decoder Specification

	4 VHDL Design Guidelines
	5 Displaying File Names
	5.1 KBC Interface
	Exercise 1
	5.2 Reading File Information
	Exercise 2
	5.3 Arbiter&Multiplexer
	Exercise 3
	5.4 Receiving File Information
	Exercise 4
	Exercise 5
	5.5 Building the List Function
	Exercise 6

	6 Making a Simple MP3 Player
	6.1 Playing the Music
	Exercise 7
	Exercise 8
	6.2 Customizing the MP3 Player
	Exercise 9
	Exercise 10
	Exercise 11

	7 Implementing the MP3 System
	7.1 Simulating and Synthesizing the PLCN Module
	7.2 Implementing the Complete MP3 System
	7.3 Testing the MP3 Player

