
SERVICE ORIENTED
DESIGN AND

ARCHITECTURE: SOLVING
TELECOM SYSTEMS

INTEGRATION PROBLEMS
Telecommunications industry faces a number of problems while

implementing the services. Cost and complexity of building and

maintaining service management systems is very high especially

when new services have to be introduced to keep pace in a highly

competitive environment. Telecommunications service providers

are moving towards the use of off-the-shelf componentware to

satisfy their management requirements. However, a crucial

problem with such an approach is the ability to integrate

components to realize integrated management solutions.

This paper describes the solution architecture that provides an

end-to-end solution to a recurring problem in telecom system

integration. The architecture and design principles in solution

realization are also discussed.

WHITEPAPER

KOTESWARA RAO MEDIDA

Interaction of RFID Technology and Public Policy

Page: Table of Contents

Table of Contents

INTRODUCTION ... 3

BUSINESS FACTORS DRIVING COMPONENT BASED ARCHITECTURES ... 3

ARCHITECTURE AND DESIGN PRINCIPLES TO MEET
CHANGING REQUIREMENTS .. 4

INTEGRATION STRATEGIES ... 5

SOLUTION ARCHITECTURE .. 12

SOLUTION REALIZATION ... 12

CONCLUSION ... 15

REFERENCES .. 15

ABOUT THE AUTHOR.. 15

ABOUT WIPRO TECHNOLOGIES ... 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

INTRODUCTION
Various issues arise with service line architecture involving integration of products with customized solutions. For a smooth
application integration to support telecom management business processes one requires a fair understanding of architectural
principles, solution architecture, and solution realization. Component integration technologies are expected to be the key to
the development of future operational support systems. The state of the relevant component integration technologies is
reviewed in the context of these requirements. This paper draws some conclusions on the relative merits of the different
types of integration methodologies and makes some suggestions for further work.

BUSINESS FACTORS DRIVING COMPONENT BASED ARCHITECTURES
The liberalization of telecom markets across the world has exposed service providers to a high level of competition. This
requires them to reduce costs, improve customer service and rapidly introduce new services. One important way in which
these pressures can be addressed is through improved integration of the many software systems operated by a service
provider. This includes amongst others, the integration of different operation support systems. Component based reuse is
seen as an increasingly important software development aid, both within the telecom industry and in the wider IT community.
Building systems from components that interact through well defined interfaces offer a route for reusing software across
projects within a telecom system developer and to integrate commodity third party software into the system. Both of these
offer development cost savings and improvements in reliability and maintainability. Emerging standards such as Enterprise
JavaBeans and CORBA Components are encouraging the development of platforms that directly support component integration.
This is prompting the telecom industry to move towards the widespread adoption of component-based architecture and
design.

Certain business factors drive requirements for revolutionary integration. For telecommunications service providers, these
include reductions in Total Cost of Ownership (TCO) and time-to-market new services, both of which provide a competitive
advantage through improved cash flows.

Factors that influence TCO fall in two categories: 1) cost of building the solution and 2) cost of operations and maintenance.
The first cost is tied to the time and effort required to build, test, and configure the solution, which is influenced by solution
modeling approaches and the availability of appropriate tools.

Many factors influence operations and maintenance costs. These include the effort to integrate new applications, the effort
to implement changes in process definition and messaging requirements, the ease of configuring, monitoring and
troubleshooting, and so on. The solution should also be future-proof relatively insensitive to technology changes. Choosing
the right solution architecture can significantly reduce both these costs. The history of information technology points to
more sophisticated solutions using higher levels of abstraction. Higher levels of abstraction lets you focus on the essential
features of the problem. One way to do this is to use the right models. The remainder of this article presents a solution
architecture that addresses the business imperatives mentioned above. The solution described here is based on the Next-
Generation Operations Systems and Software (NGOSS) initiative from the Tele Management Forum (TMF) [3]. Another initiative
that addresses the Implementation issues is OSS/J [4] initiative from SUN.

03 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

ARCHITECTURE AND DESIGN PRINCIPLES TO MEET CHANGING REQUIREMENTS
Most of the legacy software systems are tightly coupled and are finding it difficult to keep pace with the rapidly changing
business scenario. Early software systems were relatively static and any change required in the functionality would demand
extensive editing of the source code. In contemporary systems, the changes are anticipated early and the variants in architecture
and design are incorporated in early stages. These systems are more dynamic. Variability mechanisms have been present in
product line architectures [1]. They are equally applicable in service line architecture also. Variability can be handled at
different levels of abstraction. Variation points can be introduced at architecture, detailed design and implementation phase.

The intention of having a provision for a variation point in a system is to be able to insert a variant at a later stage.

In component-based design, the component can be replaced easily without changing the calling component. The source
code dependencies between components are minimized. With dynamic binding, the system will be able to use new components
at run-time; the system need not be shut down.

A design that doesn’t take change into account is likely to face the risk of redesign within a short span of time whereas a
system with a design that is robust to changes lasts long. The variable elements in a design need to be identified and
addressed early to make the system robust to changes.

Some of the common causes of designing for change and how design patterns address them are [2]:

1. Creating an Object by Specifying a Class Explicitly1. Creating an Object by Specifying a Class Explicitly1. Creating an Object by Specifying a Class Explicitly1. Creating an Object by Specifying a Class Explicitly1. Creating an Object by Specifying a Class Explicitly

Specifying a class name when creating an object commits a designer to a particular implementation instead of a particular
interface. This commitment can complicate future changes. To avoid it, create objects indirectly.

Design patterns: Abstract Factory, Factory Method, Prototype

2. Dependence on Specific Operations2. Dependence on Specific Operations2. Dependence on Specific Operations2. Dependence on Specific Operations2. Dependence on Specific Operations

When a particular operation is specified, there is one way of satisfying a request. By avoiding hard-coded requests, it is easier
to change the way a request gets satisfied both at compile-time and at run-time.

Design patterns: Chain of Responsibility, Command

3. Dependence on Hardware and Software Platform3. Dependence on Hardware and Software Platform3. Dependence on Hardware and Software Platform3. Dependence on Hardware and Software Platform3. Dependence on Hardware and Software Platform

External operating system interfaces and application programming interfaces (APIs) are different on different hardware and
software platforms. Software that depends on a particular platform will be harder to port to other platforms. It may even be
difficult to keep it up-to-date on its native platform. It’s important therefore to design your system to limit its platform
dependencies.

Design patterns: Abstract Factory, Bridge

4. Dependence on Object Representations or Implementations4. Dependence on Object Representations or Implementations4. Dependence on Object Representations or Implementations4. Dependence on Object Representations or Implementations4. Dependence on Object Representations or Implementations

Clients that know how an object is represented, stored, located, or implemented might need to be changed when the object
changes. Hiding this information from clients keeps changes from cascading.

Design patterns: Abstract Factory, Bridge, Memento, Proxy

5. Algorithmic Dependencies5. Algorithmic Dependencies5. Algorithmic Dependencies5. Algorithmic Dependencies5. Algorithmic Dependencies

 Algorithms are often extended, optimized, and replaced during development and reused. Objects that depend on an. algorithm
will have to change when the algorithm changes. Therefore algorithms that are likely to change should be isolated.

Design patterns: Builder, Iterator, Strategy, Template Method, and Visitor

04 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

6. Tight Coupling6. Tight Coupling6. Tight Coupling6. Tight Coupling6. Tight Coupling

Classes that are tightly coupled are hard to reuse in isolation, since they depend on each other. Tight coupling leads to
monolithic systems, where you can’t change or remove a class without understanding and changing many other classes. The
system becomes a dense mass that’s hard to learn, port, and maintain.

Loose coupling increases the probability that a class can be reused by itself and that a system can be learned, ported,
modified, and extended more easily. Design patterns use techniques such as abstract coupling and layering to promote
loosely coupled systems.

Design patterns: Abstract Factory, Bridge, Chain of Responsibility, Command, Facade, Mediator, and Observer

7. Extending Functionality by Sub Classing7. Extending Functionality by Sub Classing7. Extending Functionality by Sub Classing7. Extending Functionality by Sub Classing7. Extending Functionality by Sub Classing

Customizing an object by sub classing often isn’t easy. Every new class has a fixed implementation overhead (initialization,
finalization, etc.). Defining a subclass also requires an in-depth understanding of the parent class. For example, overriding
one operation might require overriding another. An overridden operation might be required to call an inherited operation.
And sub classing can lead to an explosion of classes, because you might have to introduce many new subclasses for even a
simple extension.

Object composition in general and delegation in particular provides flexible alternatives to inheritance for combining behavior.
New functionality can be added to an application by composing existing objects in new ways rather than by defining new
subclasses of existing classes. On the other hand, heavy use of object composition can make designs harder to understand.
Many design patterns produce designs in which you can introduce customized functionality just by defining one sub class
and composing its instances with existing ones.

INTEGRATION STRATEGIES
For telecommunications companies, quickly deploying and offering new services is imperative for competitive advantage.
Systems that incorporate this ability have stringent demands in scalability, reliability, and real-time interaction with network
elements. For example, creating, deploying, and offering a new service requires complex interactions between several disparate
systems, some of which may be legacy systems (Refer Figure 1). The problem is how to achieve this integration in a speedy,
cost-effective and flexible manner. It’s important to minimize costs for building and maintaining integration solutions. There
are various approaches of solving integration problems and the architectures vary. The example given regarding
telecommunications applies in any domain. The focus here is on architectural issues - not implementation.

Diagnostic

M
et

ho
do

lo
gy

Automated Tools
Best Practices

Sales &
Marketing

Activation

Customer Care

Network

New Service

Interconnection

Billing

Financials

Figure 1 - Application Portfolio for New Service Offering

05 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

Point-to-Point Integration

In point-to-point integration, communication channels are developed between each pair of applications (Refer Figure 2).
Such a solution practically not possible as the number of interfaces required grows exponentially. With n applications, n
(n-1) interfaces may be required since each application may need an interface with very other application. In practice,
however, each application will, on aver-age, requires communication with 30 percent of the other applications. So, with
eight applications, adding a ninth will require the development of 8*0.3*2 or about five extra interfaces. The impact of minor
changes in communication requirements and that of adding a new application is significant while maintenance is clearly a
nightmare.

Fraud

Inventory

Activation

Customer
Care

Network
Operations

Order
Management

Rating &
Invoicing

 Figure 2 - Point-to-Point Integration

06 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

Order
Processing

Trouble
Ticketing

Inventory
Messaging

Fault
Management

Customer
Care

Rating
Billing Provisioning Network

Management

Message Bus

Middleware - Message Oriented Integration

Point-to-point integration exponentially increases the number of interfaces. This can be reduced to a linear increase through
the use of middleware - message-oriented or based on the Common Object Request Broker Architecture or CORBA (Figure 3
illustrates this concept).

 Figure 3 - Integration Using Message Bus

The solution requires interfacing each application to the message bus through an adapter. Each application has only one
programmatic interface, the message bus. Applications communicate by publishing a message to the bus, which delivers the
message to those who subscribe. Subscription topics or queues let subscribers receive only messages they’re interested in.
There are variations on this approach; but the concept is the same. Middleware products may also provide value-added
services such as guaranteed delivery, certified delivery, transactional messaging, message transformation (using brokers), and
so on. However, this solution may not be logically much different from a point-to-point solution if every application needs
a different messaging interface with every other application. Even though there’s only one programmatic interface through
the adapter, that interface consists of several logical messaging interfaces, depending on how many different message types
the adapter needs to process. This represents a significant improvement over the point-to-point solution, but there are
several important issues:

What’s the format in which data is interchanged?

How does the application interpret a message it receives?

What’s the impact of adding a new application?

What’s the impact of changing a message definition?

07 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

This solution depends on pre-defined data structures. The adapter for each application is programmed so it can handle only
data structures defined at build time. As for the data interchange format, XML [4] is becoming popular because it’s “self-
describing.” XML is superior to proprietary formats, but it’s not a panacea since both sender and receiver must share a
common vocabulary. Without a common vocabulary, the receiver won’t know how to interpret the data. If a message
represents an order, both the sender and receiver must agree that the data encapsulated in an <ORDNO> tag represents an
order number. Changes in message definitions will require adapters to be re-coded, with consequent maintenance problems.
Another, more serious problem is that the process flow is embedded in the application or adapter logic. Consider Figure 3, the
logic regarding what to do next is generally coded into the adapter for a particular system. It’s practically impossible to
visualize the process flow at a high level of abstraction. Changes in the flow will require changes in application logic.
(Actually, even though the application data is loosely coupled, the application processes are tightly coupled.) The solution is
to externalize the process flow and have it driven by a process engine.

Process Engine Based Integration

In this approach, a graphical build-time tool typically defines the process flow. This process definition is then exported into
some standard format and loaded into the process engine’s run-time environment.

Order
Processing

Trouble
Ticketing

Inventory
Messaging

Fault
Management

BillingProcess
Def.Tool

Customer
Care

Rating
Billing

Provisioning Network
Management

Message Bus

Business
Process

Figure 4 - Integration Using External Process Engine

08 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

The benefits include a better understanding of process flow; hence a better design of messaging requirements. Easier
maintenance and easier accommodation of changes in process flow are the other advantages. Higher scalability means
multiple process engines, and it can support an increasing load.

Although this approach provides significant advantages, there’s still considerable coding that must occur when, for example,
a new application is introduced. And a number of problems remain: changes in the process flow will require re-coding the
process engine adapter, messages are determined statically at build-time and changes in message definitions will still require
recoding the adapters. Introducing new applications require a significant amount of configuration and coding. Also, the
solution isn’t a plug-and-play operation.

Revolutionary Integration

Application integration has been following an evolutionary approach. Now it’s time for a revolutionary approach for integration.
Table1 shows key architectural principles of revolutionary integration and their benefits. Although these principles primarily
target telecommunications OSS, they’re generic enough to apply in any problem domain.

Commercial Off-the-Shelf (COTS) is a well-established industry initiative. The Software Engineering Institute (SEI) has a well-
documented COTS-based system initiative. A contract describes services offered by a COTS component. The Workflow
Management Coalition is actively involved in standards for process definition.

Examples of policies are security policies, which specify authentication, access control, and encryption requirements between
components and contract trading policies, which are used to select one from a set of applicable contracts. Work that has
been done in other areas, such as policy based network management, can provide important inputs here.

The registry will typically contain information about process definitions, data models, contracts, and the status of COTS
components and adapters.

09 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

Principle Benefits Issues

Use Commercial Off-the-Shelf
(COTS) components to build
systems

• Rapid construction of
 integration solutions

• Selection of appropriate
 COTS systems
• Mismatch between
 system requirements
 and COTS capabilities

Use of contracts to invoke
COTS functionality

• Plug-and-play operation
• More robust systems
 through contract enforcement
 Reduced testing effort

• Industry wide agreement
 on contract specifications
• Vendor support
 for standardized
 contracts

Use of an external process
engine

• Minimal impact of definition
• Easier maintainability
• Better visualization
 of process changes in process

• Standard process
 definition language
• Process engine
 pluggability

Use of shared framework
services such as
communication, security, and
business process management

• Better maintainability of the
 solution due to separation
 of concerns

• Use of standardized inter-
 faces or contracts to
 access these services

Use of policies to regulate
system, behavior use of a
registry to store build-time and
run-time information

• Superior system
 administration due to
 declarative approach
• Superior control,
 monitoring, and
 troubleshooting
• Rapid configuration/
 re-con-figuration of solutions

• Standardization of
 policy scope, definition,
 and usage
• Registry schema
 definition and
 interoperability

Table 1 — Revolutionary Integration Architectural Principles

10 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

In Revolutionary integration solution, each COTS component provides a service. Furthermore, COTS components can be
classified as either Business Service Components (BSCs) or as Framework Service Components (FSCs). BSCs offer services such
as order processing, provisioning, and billing. FSCs offer services such as communications, workflow management, policy
management, and security. Each COTS component supports a well-defined interface called a contract. The contract specifies
a set of services offered by a particular component.

The definition of each service includes name of the service, parameters required providing it defined in terms of objects in the
Shared Data Model (SDM), conditions under which the service will be provided (pre-conditions), conditions that may arise
after the service is provided (post-conditions), problems that could arise when the service is provided (exceptions), and the
type of communication that should be used to invoke the service (message, CORBA, etc.).

Inventory

Circuit

END

Local Services

ILEC
Gatways

CDM

Local
Exchange

Carrier

Order
Processing

Customer
Price

The SDM is formed by
combining ports of objects from

multiple CDMs

Figure 5 — SDMs and CDMs for Provisioning

Pre-conditions, post-conditions, and exceptions are an important part of a contract specification and go a long way toward
building robust systems. The input and output parameters of contracts are specified in terms of objects defined in an SDM.
An SDM is a model of data that needs to be shared between COTS components. It represents a common, external representation
of information that needs to be exchanged between COTS components. This means that, when a COTS component wants to
communicate with another, it will convert it into SDM objects. Each COTS component has its own data model. The portion of
this data model that needs to be shared with at least one other application will be called a COTS Data Model (CDM). The SDM,
therefore, represents the union of all the CDMs. Figure 5 illustrates this.

11 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

SOLUTION ARCHITECTURE
Figure 6 shows a representative architecture for Revolutionary integration solutions. Two important features of this solution
are the API and the environment manager. This solution requires deploying a special type of API that will:

• Choose the appropriate type of communication service — message bus, CORBA, Remote Method Invocation
(RMI), etc.

• Translate between COTS-specific interactions and contract invocations

• Enforce permissions for contract invocations

• Enforce security policies

• Trade contracts using policies

The environment manager will be used to:

• Configure the environment

• View the status of process instances, API, components etc.

• View alerts caused by abnormal situations

SOLUTION REALIZATION
The architectural principles described earlier are essentially technology-neutral. Realizing these principles will require mapping
them to technology-specific implementations, which requires making choices on platforms, standards, and programming
languages. Technology specific implementations are beyond the scope of this article, but there’s a good likelihood that many
of the following technologies will be used to implement revolutionary integration solutions:

• Java 2 Enterprise Edition (J2EE) (OSS/J APIs)[6]

• XML(OSS/J APIs)

• Lightweight Directory Access Protocol (LDAP)

• .NET

• CORBA

• Message-Oriented Middleware (MOM)

• Application servers

• Web services

12 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

The revolutionary integration solution will typically operate as follows:

Each COTS component plugs into the environment, indicating its willing-ness to offer a set of services as defined by contracts.

Business Service
Components

Process
Engine

COTS Specific
Instructions

Agreements

API
API

API API API

Shared Framework Services
(Communication, Security, Process provided by Framework Service)

Environment
Manager

Registry
Agreements

Business
Service

Components

Figure 6 - Revolutionary Integration Architecture

The environment registers the component. It also maintains information about all components and the services they offer.
Components that require services can import relevant contracts from the environment. In case more than one provider of
the service exists, a component can choose the one best suited to its needs through a trading service provided by the
environment.

Normally, the process engine invokes services on BSCs. To avoid tight coupling, a BSC should not directly invoke another BSC.
However, it may invoke an FSC.

When a component needs a service, it sends a request to the API, which is responsible for invoking the service provider and
returning the results to the requester.

An SDM, accessible by all components, defines objects exchanged between components. The adapter translates between
data representations in the SDM and its own private data model or the CDM. This translation is facilitated through map-pings
between the SDM and CDM.

13 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

The environment is also responsible for enforcing policies (such as security policies) that govern the interactions between
components.

IntegrIntegrIntegrIntegrIntegration Appration Appration Appration Appration Approachoachoachoachoach Salient FeaturSalient FeaturSalient FeaturSalient FeaturSalient Featureseseseses IIIIIssuesssuesssuesssuesssues

Point-to-point Point-to-point Difficult to maintain

Message oriented Messaging middleware No separation of
business logic and
process logic

Process engine External process engine No well-defined
interaction semantics

Revolutionary • COTS components
• Contract-defined
 Interfaces
• Shared data model
• Shared framework
 services
• Policy Driven
• API support

• Overcomes previous
 limitations
• Needs to mature
 solution migration

Table 2 - Summary of different integration approaches

14 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

CONCLUSION
This article discussed the issues in service-oriented design and architecture with special emphasis on the telecommunications
industry. The approaches were classified into four generations, each representing an increasing level of sophistication. The
benefits, architecture, and issues pertaining to revolutionary integration were discussed. Also, it summarizes the features and
limitations of the various integration approaches.

REFERENCES
[1] ‘On the notion of variability in software product lines’, Proceedings of the IEEE conference on software architecture

by J.V Gurp, J.bosch and M. Svalmberg, (WICSA 01), 2001

[2] ‘Design Patterns‘, by E.Gamma, Rhelm, R.Johnson and J.Vlissides, Pearson Education, 1995

[3] www.tmforum.org

[4] http://java.sun.com/products/oss

[5] http://www.xml.com/

[6] http://java.sun.com/j2ee

ABOUT THE AUTHOR
Medida Koteswara Rao has eight years of experience in the IT field, out of which more than five years in Telecom domain. He
was involved in the development of various projects in the OSS space for various telecommunication operators. He has also

15 of 16

Service Oriented Design and Architecture: Solving Telecom Systems Integration Problems

© Wipro Technologies Page:

Worldwide HQ
Wipro Technologies,
Sarjapur Road,
Bangalore-560 035,
India.
Tel: +91-80-844 0011.

U.S.A. U.K. France
Wipro Technologies Wipro Technologies Wipro Technologies
1300 Crittenden Lane, 137 Euston Road, 91 Rue Du Faubourg,
Mountain View, CA 94043. London, NW1 2 AA. Saint Honoré, 75008 Paris.
Tel: (650) 316 3555. Tel: +44 (20) 7387 0606. Tel: + 33 (01) 4017 0809.

Germany Japan U.A.E.
Wipro Technologies Wipro Technologies Wipro Limited
Am Wehr 5, # 911A, Landmark Tower, Office No. 124,
Oberliederbach, 2-1-1 Minatomirai 2-chome, Building 1, First Floor,
Frankfurt 65835. Nishi-ku, Yokohama 220 8109. Dubai Internet City,
Tel: +49 (69) 3005 9408. Tel: +81 (04) 5650 3950. P.O. Box 500119, Dubai.

Tel: +97 (14) 3913480.

www.wipro.com
eMail: info@wipro.com

ABOUT WIPRO TECHNOLOGIES
Wipro is the first PCMM Level 5 and SEI CMMi Level 5 certified IT Services Company globally. Wipro provides comprehensive
IT solutions and services (including systems integration, IS outsourcing, package implementation, software application
development and maintenance) and Research & Development services (hardware and software design, development and
implementation) to corporations globally.

Wipro’s unique value proposition is further delivered through our pioneering Offshore Outsourcing Model and stringent
Quality Processes of SEI and Six Sigma.

For more whitepapers logon to: http://www.wipro.com/insights

© Copyright 2004. Wipro Technologies. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without express written permission from Wipro Technologies. Specifications subject to change without notice. All other trademarks mentioned herein are the
property of their respective owners. Specifications subject to change without notice.

16 of 16

