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Abstract

With the ever-increasing use of multimedia contents through electronic commerce and on-line services, the problems

associated with the protection of intellectual property, management of large database and indexation of content are

becoming more prominent. Watermarking has been considered as efficient means to these problems. Although

watermarking is a powerful tool, there are some issues with the use of it, such as the modification of the content and its

security. With respect to this, identifying content itself based on its own features rather than watermarking can be an

alternative solution to these problems. The aim of fingerprinting is to provide fast and reliable methods for content

identification. In this paper, we present a new approach for image fingerprinting using the Radon transform to make the

fingerprint robust against affine transformations. Since it is quite easy with modern computers to apply affine

transformations to audio, image and video, there is an obvious necessity for affine transformation resilient

fingerprinting. Experimental results show that the proposed fingerprints are highly robust against most signal

processing transformations. Besides robustness, we also address other issues such as pairwise independence, database

search efficiency and key dependence of the proposed method.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Multimedia fingerprinting (also known as ro-
bust hashing) is an emerging research area that is
receiving increased attention. Fingerprints are
perceptual features or short summaries of a
multimedia object. This concept is an analogy
g author.

esses: jsseo@kaist.ac.kr (J.S. Seo), jaap.

.com (J. Haitsma), ton.kalker@ieee.org

oo@ee.kaist.ac.kr (C.D. Yoo).

front matter r 2003 Elsevier B.V. All rights reserve

ge.2003.12.001
with cryptographic hash functions which map
arbitrary length data to a small and fixed number
of bits [27]. Although cryptographic hashing is a
proven method in message encryption and authen-
tication, it is not possible to directly apply it to
multimedia fingerprinting. Multimedia contents
often undergo various manipulations during dis-
tribution including compression, enhancement,
geometrical distortions and analog-to-digital con-
version that may preserve perceptual value. How-
ever, cryptographic hash functions are bit
sensitive: an alteration of a single bit in the
d.
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Nomenclature

Hð Þ hash or fingerprint function
HK ð Þ hash or fingerprint function with key K

f ðx; yÞ an image signal in spatial coordinate ðx; yÞ
gðs; yÞ the Radon transform of an image
cðl; yÞ the normalized auto-correlation of each

radial projection

Cðzl ; zyÞ the 2D Fourier transform of the log-
mapped cðl; yÞ

PFA the false alarm rate
PFR the false rejection rate
Bðn; pÞ binomial distribution to a sequence of n

trials with probability p

Nðm;sÞ normal distribution with mean m and
standard deviation s
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multimedia content will result in a completely
different hash value. This renders cryptographic
hash functions not applicable to multimedia
object. As opposed to hash functions for the
binary messages (or documents), the multimedia
fingerprinting function should allow for some
modification of the content. To supplement these
deficiencies of cryptographic hash functions we
arrive at the notion of multimedia fingerprinting,
sometimes referred to as robust hash functions
[19,43].
A number of applications of multimedia finger-

printing have been considered [24].

* Filtering technology for file sharing: Filtering
refers to active intervention in content distribu-
tion. The prime example is Napster. To settle
legal dispute with the music industry Napster
introduced the audio filtering system, which
restricts copyrighted songs from being down-
loaded. The demand for filtering mechanism is
growing as more people exchange copyrighted
images and video through file sharing services.
Multimedia fingerprinting is considered as a
good candidate for such a filtering mechanism
[19,32,36]. Besides copyright protection, the
filtering scheme can be used to provide more
refined file sharing service: a service that
provides free material, different kinds of pre-
mium material (accessible to those with a
proper subscription) and forbidden material.

* Broadcast monitoring: Monitoring refers to
tracking of radio, television or web broadcasts
for, among others, the purposes of royalty
collection, program verification and people
metering [19,15,32]. This application is passive
in the sense that it has no direct influence on
what is being broadcast: the main purpose of
the application is to observe and report. A
broadcast monitoring system based on finger-
printing consists of several monitoring sites and
a central site where the fingerprint server is
located. At the monitoring sites fingerprints are
extracted from all the (local) broadcast chan-
nels. The central site collects the fingerprints
from the monitoring sites. Subsequently the
fingerprint server, containing a huge fingerprint
database, produces the playlists of the respec-
tive broadcast channel.

* Automated indexing of multimedia library:
Nowadays many computer users have a multi-
media library containing several hundreds,
sometimes even thousands, of multimedia files
(song, image and video clips). When the files are
obtained from different sources, such as ripping
from a music CD, scanning of image and
downloading from file sharing services, these
libraries are often not well organized. By
identifying these files with fingerprinting the
files can be automatically labeled with the
correct metadata, allowing easy organization
based on, for example, artist, music album or
genre [18,29,30,42].

* Connected content: Connected content is a
general term for consumer applications where
the content is somehow connected to additional
and supporting information. Audio recognition
over mobile phone [19,41] is the typical
example. Imagine the following situation. You
are in your car, listening to the radio and
suddenly you hear a song that catches your
attention. It is the best new song you have heard
for a long time. However you missed the
announcement and you do not recognize the
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artist. Still, you would like to know more about
this music. For this case, you could connect the
audio fingerprinting server through your mobile
phone to get the title of the music and the name
of the artist [19]. It goes without saying that
similar applications can be defined for other
types of content.

* Authentication: Powerful and easy multimedia
manipulation software has made it possible to
alter digital contents. Authentication verifies
the originality of the contents by detecting
malicious manipulations. Regarding multime-
dia authentication, the key issue is to protect
the message conveyed by the content not the
particular representation of the content [33,37].
Content authentication methods can be classi-
fied into fingerprint-based [9,17,37] and water-
mark-based [12,46] approaches. In general the
fingerprint-based approaches are more robust
than watermark-based ones. However the
fingerprint-based approaches need additional
communication channel or storage to check the
authenticity of the content; the watermark-
based ones do not need these.

The mentioned applications have boosted the
interest in multimedia fingerprinting and also a
number of image fingerprinting methods have
been proposed so far. Schneider and Chang
proposed a method that uses the intensity histo-
gram of each image block as a fingerprint to verify
authenticity of an image [37]. Venkatesan et al.
proposed a method based on randomized proces-
sing [43]. Fridrich proposed a method that projects
each image block by a random pattern and
thresholds it to get fingerprint bits [16]. Lefebvre
et al. proposed a fingerprinting method based on
the Radon transform [25]. Also patents [13,20] and
other papers [1,11,28,44] have been published on
this topic. Already a number of companies [2–4,7]
have realized the business potential of multimedia
fingerprinting. Other signs of a growing awareness
of the potential of fingerprinting are a European
project on audio recognition [35], the announce-
ment of cooperation between a file-sharing com-
pany and content recognition company [36]
and a Call for Information by the IFPI and the
RIAA [22].
In this paper, we propose the affine transforma-
tion resilient image fingerprinting method using
the Radon transform [23]. The Radon transform
has some useful properties to achieve affine
resilience and has proved to be robust against
many image processing steps such as sharpening,
blurring and compression. Most of the previous
methods show limited robustness [16,28,37,43] or
require search [25] for the affine transformations.
The proposed method is highly robust against
affine transformations without searching for the
original orientation and achieves collision-free
property with relatively small amount of finger-
print bits (400 bits per image). Clearly these will
increase the practical use of the proposed method.
This paper is organized as follows. Section 2

presents the definition and requirements of crypto-
graphic hashing and multimedia fingerprinting.
Section 3 describes the proposed affine invariant
fingerprinting system. Section 4 evaluates the
performance of the proposed method.
2. Overview of multimedia fingerprinting

2.1. Cryptograhic hashing vs. multimedia

fingerprinting

A cryptographic hash function HðX Þ maps an
(usually large) object X to a (usually small) hash
value. It allows comparing two large objects X and
Y ; by only comparing their respective hash values
HðX Þ and HðY Þ: Mathematical equality of HðX Þ
and HðY Þ implies the equality of X and Y with
only a very low probability of error. For a
properly designed cryptographic hash function
this should be 2�L; where L equals the number
of bits in the hash value. Using cryptographic hash
functions, an efficient method exists to check
whether or not a particular data item X is
contained in a given and large data set Y ¼ fYig:
Instead of storing and comparing with all of the
data in Y ; it is sufficient to store the set of hash
values fhi ¼ HðYiÞg; and to compare HðX Þ with
this set of hash values. This method is more
efficient because the storage requirements are
usually more relaxed and fewer bits have to be
compared. The only caveat is that an initial
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pre-computation is required to compute the hash
values fhig:We note that good cryptographic hash
functions do indeed exist. The desirable properties
of cryptographic hash functions Hð Þ are given as
follows [5]:

* One-way hash function: Given HðX Þ; it is hard
to find an original object X ; and given X and
HðX Þ; it is hard to find an object X 0ðaX Þ such
that HðX 0Þ ¼ HðX Þ:

* Collision-free hash function: It is hard to find
two distinct objects X and Y that hash to the
same result ðHðX Þ ¼ HðY ÞÞ:

* Keyed hash function: Without knowledge of key
K ; it is hard to determine HK ðX Þ for any object
X ; to find X from HK ðX Þ and to find two
distinct objects X and Y that hash to the same
result (HK ðX Þ ¼ HK ðY Þ). Given (possibly
many) pairs of objects Xi and their hash values
HðXiÞ; it is hard to find the secret key K :

Given the above arguments, one might suppose
that cryptographic hash functions are a good tool
to identify multimedia content: take a hash
function, store hash values for all available
contents in a large database (costly, but it needs
to be done only once) and identify content by hash
matching. This method will however fail when
using classical cryptographic hash functions. For a
multimedia content we are not interested in
mathematical equality, but perceptual equality
since it often undergoes various quality-preserving
manipulations during distribution, which include
compression, enhancement, geometrical distor-
tions and analog-to-digital conversion. Crypto-
graphic hash functions cannot identify the
processed images as the original one. This problem
could be mitigated if cryptographic hash functions
would have a continuous behavior, i.e. if percep-
tually similar content would at least result in
mathematically similar hash values. However,
cryptographic hash functions typically have rather
the opposite property, in the sense that they are bit

sensitive: a single bit of difference in the content
will result in a completely different hash value.
From these observations we conclude that for

multimedia identification we need multimedia
fingerprinting (perceptual hashing) functions, func-
tions that (i) map large multimedia objects to a
small number of bits, and (ii) map perceptually
similar objects to (mathematically) similar finger-
print values [24]. More precisely, for a properly
designed fingerprint function F ; there should be a
threshold T such that jF ðAÞ � F ðBÞjoT if multi-
media objects A and B are similar and with high
probability jF ðAÞ � F ðBÞj > T if they are dissimilar
[19]. An observing reader might wonder why
instead of (ii) we do not require that perceptually
similar objects have mathematically equal finger-
print values. The question is valid, but the answer
is that such a modeling of perceptual similarity is
not possible for reasons of transitivity. To be more
precise, it is a known fact that perceptual similarity
is not transitive. Perceptual similarity of a pair of
objects A and B and of another pair of objects B
and C does not necessarily imply the perceptual
similarity of objects A and C. However, modeling
perceptual similarity by equality of fingerprinting
functions would lead to a transitive relationship.

2.2. Multimedia fingerprinting concept

Content recognition by comparing features can
be categorized in two main classes; the class of
methods based on the semantic and the non-
semantic features [32]. The former class consists of
extracting and representing content by semanti-
cally meaningful features. Examples of such
features are scene boundaries and color-histo-
grams. The latter class uses features that have no
direct semantic interpretation but are nonetheless
robust with respect to content quality preserving
transformations. Both features can be used to
establish perceptual equality of an image. How-
ever, it should be noted that a feature extraction
method for fingerprinting must be quite different
from the methods used for retrieval. In retrieval,
the features must facilitate searching of images
that somehow look similar to the query, of that
contain similar objects as the query. In fingerprint-
ing the requirement is to identify images that are
perceptually the same, except for quality differ-
ences or the effects of other signal processing.
Therefore, the features for fingerprinting need to
be far more discriminatory, but they do not
necessarily need to be semantic [32]. Moreover,
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there is no effective method yet to automatically
generate good semantic features for an image [21].
Because of those reasons, the non-semantic robust
features are widely used in building fingerprints.
Constructing a fingerprinting function is not a

trivial task. Given the lack of a proper audio–
visual perception model (or perceptual metric) and
an exact discrimination criterion, it is an ill-posed
problem to start with. For example, humans do
not readily perceive a perceptual difference be-
tween an original image and a moderately resized
or compressed version. In general, the fingerprint-
ing function needs to have the following properties.

* Robustness (Invariance under perceptual simi-
larity): The fingerprints resulting from degraded
versions of an image should result in the same
or at least similar fingerprints with respect to
the fingerprint of the original image. Robust-
ness refers to the ability to positively identify
two perceptually similar objects as similar.

* Pairwise independence (Collision free): If two
images are perceptually different, the finger-
prints from two images should be considerably
different. For pairwise independence, it is desir-
able that fingerprint bits have uniform distribu-
tion and are uncorrelated with each other.

* Database search efficiency: For the commercial
applications mentioned in Section 1, fast
database search is essential. Through a naive
approach, every identification of an image
would approximately require more than mil-
lions of comparisons for a large database (for
example, millions of images). For any reason-
able bit-size of the fingerprints, this would mean
impractical access times. Without a proper
structure in a fingerprint database, searching
and retrieving will easily explode into an
impractical system [8,10]. However, if the space
of fingerprint values has some kind of percep-
tual ordering structure, search complexity can
be considerably reduced [24].
3. Proposed image fingerprinting method

The fingerprinting function should be based on
robust and perceptually relevant features to meet
the requirements in Section 2.2. Our prime
objective is to achieve high robustness against
affine transformations without losing other desir-
able properties. Resilience to affine transformations
has been one of the main issues in many image
processing research areas, such as pattern recogni-
tion [31,45] and watermarking [6,26,34,40]. In order
to obtain affine resilience, the affine invariant
features based on the Radon transform are selected
for the proposed image fingerprints. The Radon
transform has proved to be robust against image
processing such as sharpening, blurring, adding
noise, compression and has some desirable proper-
ties with regard to affine transformations. Details
of the proposed method are in the next subsections.

3.1. Radon transform and its properties

The Radon transform represents an image as a
collection of projections along various directions.
It is widely used in areas ranging from seismology
to computer vision. The Radon transform of an
image f ðx; yÞ; denoted as gðs; yÞ; is defined as its line
integral along a line inclined at an angle y from the
y-axis and at a distance s from the origin [33] as
shown in Fig. 1. Mathematically, it is written as

gðs; yÞ ¼
Z

N

�N

Z
N

�N

f ðx; yÞdðx cos y

þ y sin y� sÞ dx dy; ð1Þ

where �NosoN; 0pyop: The Radon trans-
form gðs; yÞ is the one-dimensional projection of
f ðx; yÞ at an angle y: The Radon transform has the
following useful properties for the affine transfor-
mations of an image.
(P1)
 Translation of an image by ðx0; y0Þ causes the
Radon transform to be translated in the
direction of s; i.e.,

f ðx � x0; y � y0Þ2gðs � x0 cos y� y0 sin y; yÞ:
(P2)
 Scaling (retaining aspect ratio) of an image
by a factor r ðr > 0Þ causes the Radon
transform to be scaled through the same
factor, i.e.,

f ðrx; ryÞ2
1

jrj
gðrs; yÞ:
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Rotation of an image by an angle yr causes
(P3)

the Radon transform to be shifted by the
same amount, i.e.,

f ðx cos yr � y sin yr;x sin yr þ y cos yrÞ

2gðs; y� yrÞ:
Fig. 2 shows the Radon transform of the Lena
image. Fig. 2a–d shows the Radon transform of
Fig. 1. Projection integral in the direction y:

The Radon transform of: (a) original, (b) translated (64 pixels

mage (size 512� 512).
original, translated (64 pixels in x direction), scaled
(scaling factor 0.75) and rotated ð25
Þ Lena image,
respectively. Fig. 2b–d shows that gðs; yÞ is
translated by 64 cos y pixels in the s direction,
scaled by a factor of 0.75 in the s direction and
cyclicly shifted by 25
 in the y direction, respec-
tively, with respect to the Radon transform of the
original Lena image.

3.2. Affine invariant feature extraction

We consider here angle preserving affine trans-
formations: translation, scaling (retaining aspect-
ratio) and rotation. By using the above properties
of the Radon transform, affine-invariant features
are obtained. From (P1) the translation of an
image causes translation in the Radon domain, but
the amount of translation in each projection is
different. For translation invariance, the normal-
ized auto-correlation of each radial projection is
calculated that is given as follows:

cðl; yÞ ¼

R
N

�N
gðs; yÞgðs � l; yÞ dsR

N

�N
gðs; yÞgðs; yÞ ds

: ð2Þ
in x direction), (c) scaled (scaling factor 0.75), (d) rotated ð25
Þ;
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Fig. 3. Overview of affine transformation resilient fingerprint

extraction.

J.S. Seo et al. / Signal Processing: Image Communication 19 (2004) 325–339 331
By taking the auto-correlation, we get a transla-
tion-invariant signal cðl; yÞ: Among the affine
transformations, scaling and rotation are re-
mained in cðl; yÞ: Consider the auto-correlation
cðl; yÞ of the Radon transform of an original
image. From (P2) and (P3), the auto-correlation of
the Radon transform of a scaled and rotated
image is given as c0ðl; yÞ ¼ cðrl; y� yrÞ where r
ðr > 0Þ and yr are the amount of scaling and
rotation, respectively. To achieve invariance on the
scaling and rotation, the log mapping and the 2D
Fourier transform are used. The log mapping
translates the scaling of the signal to a shift. The
subsequent Fourier transform translates this shift
into a phase change. By the log mapping l ¼ em;
the signal c0ðl; yÞ can be written as

c0ðl; yÞ ¼ cðrl; y� yrÞ

¼ cðexp½mþ log r
; y� yrÞ: ð3Þ

Then the log-mapped signal *c0ðm; yÞ is given by

*c0ðm; yÞ ¼ *cðmþ log r; y� yrÞ: ð4Þ

The 2D Fourier transform of the log-mapped
signal is written as

C0ðzl ; zyÞ ¼
Z p

0

Z
N

�N

*c0ðm; yÞexp½�jmzl � jyzy
 dm dy

¼ exp½jzl log r� jzyyr
Cðzl ; zyÞ: ð5Þ

Then the magnitude jC0ðzl ; zyÞj and phase f0ðzl ; zyÞ
of the complex signal C0ðzl ; zyÞ are given by

jC0ðzl ; zyÞj ¼ jCðzl ; zyÞj ð6Þ

f0ðzl ; zyÞ ¼ zl log r� zyyr þ+Cðzl ; zyÞ

¼ zl log r� zyyr þ fðzl ; zyÞ; ð7Þ

where+Cðzl ; zyÞ is the phase of the complex signal
Cðzl ; zyÞ:
As shown above, the log mapping translates

scaling into a shift, and the subsequent Fourier
transform translates the shift into a phase change.
By using these properties, we find features that are
invariant to scaling. From Eq. (6), jC0ðzl ; zyÞj is
affine invariant. Since zl log r� zyyr in Eq. (7) is a
linear function of zl and zy; the double differentia-
tion of f0ðzl ; zyÞ on zl or zy is also affine invariant.
3.3. Fingerprint bit extraction

An overview of the proposed fingerprinting
method is shown in Fig. 3. To obtain affine
resilience, the affine invariant features described in
Section 3.2 are used for fingerprint bit extraction.
In practice, the energy compaction property of the
DFT (Discrete Fourier Transform) ensures that
most of the energy of the image is concentrated at
low-frequency coefficients of C0ðzl ; zyÞ: We note
that a large majority of the Fourier coefficients has
relatively small values and therefore contribute
little to the total energy of the signal. From the
energy compaction property, we take the 21� 21
low-frequency coefficients of C0ðzl ; zyÞ for the
filtering as shown in Fig. 4. In general, the low-
frequency coefficients are more robust, and the
high-frequency coefficients are more discrimina-
tory. Therefore we should make a trade-off
between robust and discriminatory features in
choosing the coefficients. Fingerprints from the
21� 21 low-frequency coefficients showed the best
balance between the two. Experimentally it was
verified that the sign of the difference between
affine invariant features is very robust against
many kinds of processing and reduces correlation
between fingerprint bits. The coefficients of
logjC0ðzl ; zyÞj and f0ðzl ; zyÞ are filtered by a simple
2D filter Fzl ;zy (along both zl and zy axes), of which
the kernel Fzl ;zy equals

Fzl ;zy ¼
�1 1

1 �1

" #
: ð8Þ

The output of the filter Fzl ;zy is invariant to affine
transformations as we have seen in Section 3.2. If a
keyed fingerprinting function is required, we can
interleave jC0ðzl ; zyÞj and f0ðzl ; zyÞ before filtering
as shown in Fig. 3. The details of the
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Fig. 4. Fingerprint bit extraction.

Fig. 5. (a) Fingerprint of original Lena image, (b) Fingerprint

of compressed Lena image, (c) the difference between a and b

showing bit errors in black ðBER ¼ 0:05Þ:
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keyed fingerprinting function are described in
Section 3.5. Finally the 20� 20 filter output (only
those parts of the filter output that are computed
without the zero padding) is converted to bits by
taking the sign of the resulting value (threshold-
ing). Then we get two intermediate fingerprints
from the magnitude jC0ðzl ; zyÞj and the phase
f0ðzl ; zyÞ: The fingerprint bits are determined by
taking exclusive-or (XOR) of the bits from the
magnitude and the bits from the phase. It was
experimentally verified that mixing the magnitude
and the phase information by XOR improves the
pairwise independence (collision-free). Finally we
obtain 20� 20 fingerprint bits (400 bits per
image). We refer to the 20� 20 fingerprint bits
as a fingerprint block and the 20 bits in each row as
a sub-fingerprint. This ordering structure can
reduce the database search complexity consider-
ably [19]. The experimental database search result
is given in Section 4.2.
Fig. 5 shows an example of a fingerprint block

(20 subsequent 20-bit sub-fingerprints) extracted
with the proposed method from the Lena image. A
‘1’ bit corresponds to a white pixel and a ‘0’ bit to
a black pixel. Fig. 5a and b shows a fingerprint
block from an original image and JPEG com-
pressed (quality factor 10%) version of it, respec-
tively. Ideally these two fingerprints should be
identical, but due to the compression some of the
bits are erroneous. These bit errors, which are used
as the similarity measure, are shown in black in
Fig. 5c.

3.4. Fingerprint matching

For the fingerprint matching, the images are
declared similar if the Hamming distance (bit error
rate) between their fingerprints is below a certain
threshold T : The problem could be formulated as
the following hypothesis testing using the finger-
printing function Hð Þ:

* L0: Two images I and I 0 are from the same
image if the Hamming distance DðHðIÞ;HðI 0ÞÞ
is below a threshold T :

* L1: Two images I and I 0 are from the different
image if the Hamming distance DðHðIÞ;HðI 0ÞÞ
is above a threshold T :

For the selection of threshold T ; the false alarm
rate PFA and the false rejection rate PFR should be
considered. The false alarm rate PFA is the
probability to declare different images as similar.
The false rejection rate PFR is the probability to
declare the images from the same image as
dissimilar. In practice, PFR is difficult to analyze
since there are plenty of image processing steps of
which the exact characteristics are not known.
Thus it is common to deal with PFA for the
selection of threshold T :
In order to analyze the choice of threshold T ; we

assume that the fingerprint extraction process
yields random independent and identically distrib-
uted (i.i.d.) bits. Then the number of bit errors
between the fingerprints from different images will
have a binomial distribution Bðn; pÞ where n

equals the number of bits extracted and p is the
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Fig. 6. Nested structure for keyed fingerprinting.
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probability that a ‘0’ or ‘1’ bit is extracted. Since
n ð¼ 400Þ is sufficiently large, the binomial dis-
tribution can be approximated by a normal
distribution with mean np and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞ
p

: From that, the bit error rate (BER)
has a normal distribution with mean m ¼ p and
standard deviation s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
: For the ideal

case, p ¼ 0:5 and thus m ¼ 0:5 and s ¼ 0:025:
Through the normal approximation Nðm; sÞ; the
false alarm rate PFA for BER is given as follows:

PFA ¼
Z T

�N

1ffiffiffiffiffiffi
2p

p
s
exp

�ðx � mÞ2

2s2

� �
dx

¼
1

2
erfc

m� Tffiffiffi
2

p
s

 !
: ð9Þ

For a certain value of PFA; the threshold T for the
BER can be determined. In the experiments we use
T ¼ 0:3: Then we arrive at a very low false alarm
probability of erfcð5:66Þ=2 ¼ 6:2E � 16: It means
that out of 400 bits there must be less than 120 bits
in error in order to decide that the fingerprint
blocks originate from the same image. It was
experimentally verified in Section 4.1 that the
fingerprints extracted using the proposed method
follow the random i.i.d. case fairly well.

3.5. Keyed fingerprinting function

In some applications (for example image
authentication), the security of the fingerprint
extraction algorithm is an issue. More precisely,
it is sometimes required that the fingerprint
function depends on a key K : For two different
keys K1 and K2; the fingerprinting function H

should have the property that HK1
ðX ÞaHK2

ðX Þ
for any image X : Some general guidelines for
keyed cryptographic hash functions are given at
[5]. First, it should use the secret key and every bit
of the object iteratively in the hashing process.
Second, it should uniformly distribute the hash
bits to thwart statistical attacks. These guidelines
should be also considered in constructing keyed
fingerprinting function. We construct a keyed
fingerprinting function by using the interleaving
as shown in Fig. 3. The coefficients of C0ðzl ; zyÞ are
randomly interleaved in either zl or zy direction by
the permutation table (this is key information).
The construction of the permutation table as a
function of key can be found in [38]. After
interleaving, the same fingerprint extraction meth-
od in Section 3.3 is used. Interleaving does not
have any effect on the affine invariance of the
output of the filter Fzl ;zy : To get more security, a
nested structure shown in Fig. 6 can be used. The
fundamental building block in the nested structure
is the fingerprint extraction function and the XOR
operation. This is called a round. In each round,
fingerprint bits are extracted from the image with a
different key. Then, the fingerprint bits in the
current round are XORed by the fingerprints in
the previous rounds. Mathematically it is given as
follows:

Bp ¼ Bp�1"HKp
ðX Þ; ð10Þ

where X is the input image, " is the XOR, Bp is
pth round fingerprints, Kp is pth round permuta-
tion table and p ¼ 1;y;P (P is constant positive
integer). The process is continued until Pth round,
and then the final fingerprint bits are BP:
4. Experimental results

To evaluate the proposed method, we tested our
method on a thousand images that include indoor
and outdoor scenes, people, vehicles, sporting
events and paintings. Some of the images were
taken by digital camera, and others were gathered
from the Internet. The sizes of the images range
from 133� 209 to 2560� 1920: Prior to applying
the proposed method, we normalize the image by



ARTICLE IN PRESS

J.S. Seo et al. / Signal Processing: Image Communication 19 (2004) 325–339334
taking the luminance component of it and resizing
it uniformly to either 512� M or M � 512 where
M is smaller than 512. The resized image is filtered
by median filter that is somehow effective in
correcting small geometric processing, such as
bend, distort and stretch. The preprocessed image
is projected onto N (typically, N ¼ 512) radial
directions using the Radon transform. The other
steps are the same as in Fig. 3.

4.1. Pairwise independence and key dependence

To test pairwise independence, we extracted
fingerprints from 1000 images. Thereafter the BER
between all possible pairs (499,500) of the finger-
prints were calculated. Fig. 7a shows the histo-
gram of the measured BER. All the measured BER
were in the range between 0.37 and 0.62. The
histogram of the measured BER shows that the
proposed fingerprints follow the ideal random
i.i.d. case in Section 3.4 fairly well. The mean of
the measured BER was 0.4930 which is close to
0.5, and the standard deviation of it was 0.0272
which is also close to 0.025. This shows that the
proposed method is approximately pairwise in-
dependent.
To show validity of the interleaving as a key, we

generated 1000 fingerprints from the Lena image
Fig. 7. (a) Histogram of measured BER between the finger-

prints from different images, (b) Histogram of measured BER

between fingerprints of Lena generated with different keys; The

dotted line represents the ideal random i.i.d. case Nð0:5; 0:025Þ:
using different interleaving. Similar with the above
analysis, the BER between all possible pairs of the
fingerprints were calculated. The histogram of the
measured BER is shown in Fig. 7b. Mean and
standard deviation of the measured BER were
0.5000 and 0.0263, respectively. This result clearly
shows the fingerprint is significantly dependent on
the key information (interleaving). By combining
the nested structure in Fig. 6 with interleaving as in
Section 3.5, the proposed method can provide
efficient keying scheme. In terms of security, such
a strong dependency on the key is significant. Once
a key is broken, the user can simply change it,
like a password [43] without modifying overall
system.

4.2. Robustness and database search efficiency

To test robustness of the proposed method, the
original images were subjected to various image
processing steps (see [14] for a detailed description
of the processing steps) and their respective
fingerprint blocks were extracted. Mean and
standard deviation and false rejection rate of the
BER between the original and the processed image
fingerprints are shown in Table 1 for 1000 images.
Figs. 8 and 9 show histograms of the measured
BER between the original and the processed image
fingerprints for the geometric and the non-
geometric image processing steps respectively.
Table 1

Mean, standard deviation (Std) and false rejection rate (with

threshold T ¼ 0:3) of the measured BER for different kinds of

signal degradations for 1000 test images

Processing Mean Std PFR

JPEG ðQ ¼ 10%Þ 0.0487 0.0350 0.002

Gaussian filtering 0.0206 0.0175 0

Sharpening filtering 0.0458 0.0317 0

Median filtering ð4� 4Þ 0.0519 0.0277 0

Rotation (worst case 45:176
) 0.1740 0.0275 0.001

Rotation ð90
Þ 0.0806 0.0185 0

Scaling ðr ¼ 0:5Þ 0.0202 0.0184 0

Scaling ðr ¼ 0:15Þ 0.1146 0.0690 0.023

Cropping (2%) 0.1483 0.0524 0.007

17 column 5 row removed 0.1671 0.0670 0.040

Random bending attack 0.1928 0.0629 0.049
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Fig. 8. Histogram of measured BER for: (a) rotation, ð45:176
Þ (b) scaling ðr ¼ 0:15Þ; (c) cropping (2%), (d) random bending attack.

Fig. 9. Histogram of measured BER for: (a) Gaussian filtering, (b) median filtering, (c) JPEG compression, ðQ ¼ 10%Þ (d) 17 column 5
row removed.
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Table 2

Mean of the number of hits in the database for different kinds

of signal degradations for 1000 test images

Processing 1 candidate case

ðd ¼ 0Þ
1024 candidates

case ðd ¼ 10Þ

JPEG ðQ ¼ 10%Þ 9.702 (5) 17.715 (1)

Gaussian filtering 14.018 (1) 19.353 (0)

Sharpening filtering 9.861 (4) 17.921 (0)

Median filtering

(4� 4)

8.661 (2) 17.631 (0)

Rotation (worst case

45:176
)
1.490 (228) 9.140 (1)

Rotation ð90
Þ 6.622 (0) 15.077 (0)

Scaling ðr ¼ 0:5Þ 14.271 (1) 19.364 (0)

Scaling ðr ¼ 0:15Þ 5.059 (54) 13.356 (2)

Cropping (2%) 3.123 (96) 10.825 (0)

17 column 5 row

removed

1.684 (291) 9.384 (12)

Random bending

attack

2.159 (196) 8.463 (4)

The number in the parentheses refers to the number of images

without hits.

J.S. Seo et al. / Signal Processing: Image Communication 19 (2004) 325–339336
The result denotes that the proposed method is
highly robust to affine transformations, which
preserve aspect ratio (all possible angles of the
rotation and the scaling factor r larger than 0.15)
and other image processing steps including com-
pression and various filtering.
It is important for any fingerprinting method

that it not only results in a low BER but also
allows efficient searching. For the efficient search-
ing we made an ordering structure; the fingerprint
block and the sub-fingerprint as described in
Section 3.3. Rather than searching the database
with fingerprint block every time, sub-fingerprint
matching using a lookup table is more efficient
[19]. The simplest assumption is that at least one
sub-fingerprint has an exact match at the database.
Then the only fingerprints in the database that
need to be checked are the ones where one of the
20 sub-fingerprints in the fingerprint block
matches perfectly. However, for heavily degraded
images the simplest assumption might not be
always true. All the 20 sub-fingerprints might have
several bit errors. In [19] a search algorithm is
presented that exploits the fact that each of the 20
sub-fingerprints in a fingerprint block has a list of
most probable candidates for being an original

sub-fingerprint. For the proposed method, the
sub-fingerprints are obtained by comparing and
thresholding the difference of affine invariant
features. If the difference is very close to the
threshold (in our case the threshold is zero), it will
be more likely that the bit was received incorrectly.
If the difference is much larger than the threshold,
the probability of an incorrect bit will be low.
From this soft-decoding information, a list of most
probable candidates for being an original sub-
fingerprint is determined. If we want to allow d

errors in each sub-fingerprint, the number of
candidates will be 2d : In our experiments, a list
of 1024 most probable candidates ðd ¼ 10Þ was
created for each sub-fingerprint. Then we have 20
lists of 1024 candidates from 20 sub-fingerprints in
the fingerprint block. From these lists the finger-
print database can be searched very efficiently, and
with high probability at least one of the 20 lists of
the fingerprint block contains a corresponding
original sub-fingerprint. There are two measures in
assessing the fingerprint database search: recall
and precision. Recall refers to the rate at which the
database search contains the corresponding finger-
print. Precision refers to the proportion of the
database search that is actually correct. To test the
recall rate of the database search, we search the
database with the processed images. Table 2 shows
the number of lists that contain a corresponding
original sub-fingerprint for each processing step.
This number is referred to as the number of
database hits. Table 2 shows that the number of
database hits is sufficient to database search for
most of the image processing steps. We recall from
[19] that only a single database hit is needed for a
successful search. To test the precision of the
database search, we search the database with the
1000 original test images that are used for making
the database. Then it is desirable that the database
search reports only one candidate image in
terms of precision. Fig. 10 shows the histogram
of the number of candidate images which the
database search reported. The average number of
candidate images was 2.396 and 51.451 for d ¼ 0
and d ¼ 10 cases, respectively. We note that the
precision is the reciprocal of the number of
candidate images. Table 2 and Fig. 10 show that
there is a trade-off between the recall and
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Fig. 10. Histogram of the number of candidate images which the database search reported for 1000 test images, (a) 1 candidate for

each sub-fingerprint (d ¼ 0 case), (b) 1024 candidates for each sub-fingerprint (d ¼ 10 case).
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the precision of the database search with the value
of d:
5. Conclusion

For multimedia fingerprinting, extracting fea-
tures that allow direct access to the relevant
distinguishing information is crucial. For a good
fingerprinting system, the features should be both
fairly discriminative and robust. In this paper, we
proposed a robust image fingerprinting method by
basing on the affine invariant differential features
of the Radon transform. Fingerprint bits are
obtained using the nonlinear operation (taking
the sign after thresholding) and random permuta-
tion of the affine invariant features. It was
experimentally verified that the proposed image
fingerprints satisfy the main requirements of
fingerprints; robustness under quality preserving
signal processing steps, pairwise independence
with different inputs and database search effi-
ciency. A variant of the proposed fingerprint
scheme has also been successfully used for
extracting speed-change resilient audio fingerprints
[39]. Future work includes the extension of the
proposed method to video.
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