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1. Introduction to Neural Networks 
 
1.1. Overview 
 
Artificial neural networks are computational paradigms based on mathematical models that unlike 
traditional computing have a structure and operation that resembles that of the mammal brain. 
Artificial neural networks or neural networks for short, are also called connectionist systems, 
parallel distributed systems or adaptive systems, because they are composed by a series of 
interconnected processing elements that operate in parallel. Neural networks lack centralized 
control in the classical sense, since all the interconnected processing elements change or “adapt” 
simultaneously with the flow of information and adaptive rules. 
 
One of the original aims of artificial neural networks (ANN) was to understand and shape the 
functional characteristics and computational properties of the brain when it performs cognitive 
processes such as sensorial perception, concept categorization, concept association and learning. 
However, today a great deal of effort is focussed on the development of neural networks for 
applications such as pattern recognition and classification, data compression and optimisation. 
 
 
1.2. Model for an ANN 
 
A generic artificial neural network can be defined as a computational system consisting of a set of 
highly interconnected processing elements, called neurons, which process information as a 
response to external stimuli. An artificial neuron is a simplistic representation that emulates the 
signal integration and threshold firing behaviour of biological neurons by means of mathematical 
equations. Like their biological counterpart, artificial neurons are bound together by connections 
that determine the flow of information between peer neurons. Stimuli are transmitted from one 
processing element to another via synapses or interconnections, which can be excitatory or 
inhibitory. If the input to a neuron is excitatory, it is more likely that this neuron will transmit an 
excitatory signal to the other neurons connected to it. Whereas an inhibitory input will most likely 
be propagated as inhibitory. 
 

 
Figure 1: Basic model of a single neuron  



 
The inputs received by a single processing element (depicted in Figure 1) can be represented as an 
input vector A= (a1, a2,… an), where ai  is the signal from the ith input. A weight is associated with 
each connected pair of neurons. Hence weights connected to the jth neuron can be represented as a 
weight vector of the form Wj= (w1j, w2j, …, wnj), where wi j represents the weight associated to the 
connection between the processing element ai, and the processing element aj. A neuron contains a 
threshold  value that regulates its action potential. While action potential of a neuron is determined 
by the weights associated with the neuron’s inputs (Eq. 1), a threshold ? modulates the response of 
a neuron to a particular stimulus confining such response to a pre-defined range of values. Equation 
2 defines the output y of a neuron as an activation function f of the weighted sum of n+1 inputs. 
These n+1  correspond to the n incoming signals. The threshold is incorporated into the equation as  
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Figure 1: Step function 
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Figure 2: Saturation function 
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Figure 3: Sigmoid function 
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Figure 4: Hyperbolic tangent function 

 
 
 
1.3. Modes of behaviour 
 
An artificial network performs in two different modes, learning (or training) and testing. During 
learning, a set of examples is presented to the network. At the beginning of the training process, the 
network ‘guesses’ the output for each example. However, as training goes on, the network modifies 
internally until it reaches a stable stage at which the provided outputs are satisfactory. Learning is 
simply an adaptive process during which the weights associated to all the interconnected neurons 
change in order to provide the best possible response to all the observed stimuli. Neural networks 
can learn in two ways: supervised or unsupervised. 
 

• Supervised learning The network is trained using a set of input-output pairs. The goal is to 
‘teach’ the network to identify the given input with the desired output. For each example in 
the training set, the network receives an input and produces an actual output. After each 
trial, the network compares the actual with the desired output and corrects any difference by 
slightly adjusting all the weights in the network until the output produced is similar enough 
to the desired output, or the network cannot improve its performance any further. 

 



• Unsupervised learning The network is trained using input signals only. In response, the 
network organises internally to produce outputs that are consistent with a particular stimulus 
or group of similar stimuli. Inputs form clusters in the input space, where each cluster 
represents a set of elements of the real world with some common features.  

 
In both cases once the network has reached the desired performance, the learning stage is over and 
the associated weights are frozen. The final state of the network is preserved and it can be used to 
classify new, previously unseen inputs. At the testing stage, the network receives an input signal 
and processes it to produce an output. If the network has correctly learnt, it should be able to 
generalise, and the actual output produced by the network should be almost as good as the ones 
produced in the learning stage for similar inputs. 
 
 
1.4. Structure of ANNs 
 
Neural networks are typically arranged in layers. Each layer in a layered network is an array of 
processing elements or neurons. Information flows through each element in an input-output 
manner. In other words, each element receives an input signal, manipulates it and forwards an 
output signal to the other connected elements in the adjacent layer. A common example of such a 
network is the Multilayer Perceptron (MLP) (Figure 5). MLP networks normally have three layers 
of processing elements with only one hidden layer, but there is no restriction on the number of 
hidden layers. The only task of the input layer is to receive the external stimuli and to propagate it 
to the next layer. The hidden layer receives the weighted sum of incoming signals sent by the input 
units (Eq. 1), and processes it by means of an activation function. The activation functions most 
commonly used are the saturation (Eq. 4), sigmoid (Eq. 5) and hyperbolic tangent (Eq. 6) functions. 
The hidden units in turn send an output signal towards the neurons in the next layer. This adjacent 
layer could be either another hidden layer of arranged processing elements or the output layer. The 
units in the output layer receive the weighted sum of incoming signals and process it using an 
activation function. Information is propagated forwards until the network produces an output. 
 

Input Layer           Hidden Layer        Output Layer  

Flow of Information 
 



Figure 5: A multilayered feedforward network 

 
 
1.5. Training a feedforward neural network 
 
The output produced by a neuron is determined by the activation function. This function should 
ideally be continuous, monotonic and differentiable. The output should be limited to a well-defined 
range, with an easy to calculate derivative. With all these features in mind, the most commonly 
chosen functions are the sigmoid (Eq. 5) and hyperbolic tangent (Eq. 6) functions described above. 
If the desired output is different from the input, it is said that the network is hetero-associative, 
because it establishes a link or mapping between different signals (Figure 6), while in an auto-
associative network, the desired output is equal to the input (Figure 7).  

 
Figure 6:Input -output in a Heteroassociative network 



 
Figure 7: Input-output in an Autoassociative network 

As seen before, during the learning process weights in a network are adapted to optimise the 
network response to a presented input. The way in which these weights are adapted is specified by 
the learning rule. The most common rules are generalizations of the Least Mean Square Error 
(LMS) rule (Eq. 7) , being the generalised delta rule or backpropagation (Rumelhart:86, 
Rumelhart:86a), the most frequently used for supervised learning in feedforward networks.  
 
In supervised learning, a feedforward neural network is trained with pairs of input-output examples. 
For each input, the network produces an output. The accuracy of the response is measured in terms 
of an error E defined as the difference between the current op and desired tp output (Eq. 7). 
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Weights are changed to minimise the overall output error calculated by Eq. 7. 
 
The error E is propagated backwards from the output to the input layer. Appropriate adjustments 
are made , by slightly changing the weights in the network by a proportion d of the overall error E. 
 
After weights have been adjusted, examples are presented all over again. Error is calculated, 
weights adjusted, and so on, until the current output is satisfactory, or the network cannot improve 
its performance any further. A summarized mathematical description of the backpropagation 
learning algorithm extracted from (Rumelhart:86a, Aleksander:90) is presented as follows. 
 

1. Present the input-output pair p and produce the current output op. 
2. Calculate the output of the network. 
3. Calculate the error dpj for each output unit j for that particular pair p. The error is the 

difference between the desired tpj and the current output opj times the derivative of the 
activation function f’j(netpj), which maps the total input to an output value. 
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4. Calculate the error by the recursive computation of d for each of the hidden units j in the 
current layer. Where wkj are the weights in the k output connections of the hidden unit j , dpk 
are the error signals from the k units in the next layer and f’j(netpj) is the derivative of the 
activation function. Propagate backwards the error signal through all the hidden layers until 
the input layer is reached. 
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5. Repeat steps 1 through 4 until the error is acceptably low. 
 

 

2. Neural Networks in Healthcare 
 
The advantage of neural networks over conventional programming lies in their ability to solve 
problems that do not have an algorithmic solution or the available solution is too complex to be 
found. Neural networks are well suited to tackle problems that people are good at solving, like 
prediction and pattern recognition (Keller). Neural networks have been applied within the medical 
domain for clinical diagnosis  (Baxt:95) , image analysis and interpretation (Miller:92, Miller:93) , 
signal analysis and interpretation, and drug development (Weinstein:92). The classification of the 
applications presented below is simplified, since most of the examples lie in more than one 
category (e.g. diagnosis and image interpretation; diagnosis and signal interpretation). 
 
2.1. Clinical diagnosis 
 
Papnet is a commercial neural network-based computer program for assisted screening of Pap 
(cervical) smears. A Pap smear test examines cells taken from the uterine cervix for signs of 
precancerous and cancerous changes. A properly taken and analysed Pap smear can detect very 
early precancerous changes. These precancerous cells can then be eliminated, usually in a relatively 
simple office or outpatient procedure. Detected early, cervical cancer has an almost 100% chance 
of cure. Traditionally, Pap smear testing relies on the human eye to look for abnormal cells under a 
microscope. It is the only large scale laboratory test that is not automated. Since a patient with a 
serious abnormality can have fewer than a dozen abnormal cells among the 30,000 - 50,000 normal 
cells on her Pap smear, it is very difficult to detect all cases of early cancer by this "needle-in-a-
haystack" search. Imagine proof-reading 80 books a day, each containing over 300,000 words, to 
look for a few books each with a dozen spelling errors! Relying on manual inspection alone makes 
it inevitable that some abnormal Pap smears will be missed, no matter how careful the laboratory is. 
In fact, even the best laboratories can miss from 10% - 30% abnormal cases “Papnet-assisted 
reviews of [cervical] smears result in a more accurate screening process than the current practice -- 
leading to an earlier and more effective detection of pre-cancerous and cancerous cells in the 
cervix”. 



 
 

 
Figure 8: Papnet  displaying images from a cervical smear. 

 
A research group at University Hospital, Lund, Sweden tested whether neural networks trained to 
detect acute myocardial infarction could lower this error rate. They trained a network using ECG 
measurements from 1120 patients who had suffered a hearth attack, and 10,452 healthy persons 
with no history of hearth attack. The performance of the neural networks was then compared with 
that of a widely used ECG interpretation program and that of an experienced cardiologist. Neural 
networks were 15.5% more sensitive than the interpretation program and 10.5% more sensitive 
than the cardiologist in diagnosing any abnormalities. But the cardiologist was slightly better at 
recognising ECGs with very clear-cut acute myocardial infarction changes (Circulation 1997; 96: 
1798-1802). (The Lancet; September 27, 1997) 
 
An Entropy Maximization Network (EMN) has been applied to prediction of metastases in breast 
cancer patients (Choong:94). They used EMN to construct discrete models that predict the 
occurrence of axilliary lymph node metastases in breast cancer patients, based on characteristics of 
the primary tumour alone. The clinical and physiological features used in the analysis are: age of 
the patient at the time of diagnosis of the primary tumour ; mitotic count (the number of relative 
hyperchromatic nuclei (per 10 hpf) in the primary invasive tumour; Tubule formation of the 
primary tumour; assessment of the size of the tumour nuclei; assessment of the variability of the 
shape and size of the tumour nuclei; tumour grading; gross size of the primary tumour; and 
presence/absence of carcinoma in peritumoural vessel. Results indicated that EMN is an effective 
way of constructing discrete models from small data sets. 
 
Burke et al compared the prediction accuracy of artificial neural ne tworks and other statistical 
models for breast cancer survival.  The neural network was a multilayer perceptron trained with the 
backpropagation learning algorithm. Compared with the TNM staging system (tumour size, number 
of nodes with metastatic disease, and distant metastases), artificial neural networks proved to be 
more accurate in predicting 5 year survival of 25 cases used in this study. (Burke:95) 
 
A multilayer perceptron trained with preoperative data of 54 patients with early prognosis of 
hepatocellular carcinoma, proved to be a reliable decision support tool for prognosis and 
assessment of the extent of hepatectomy of patients with hepatocellular carcinoma. (Hamamoto:95)  
 
An artificial neural network has been used to predict the occurrence of coronary artery disease. 
Serum lipid profile and clinical events of 162 patients over a period of 10 years served as input data 



to the network. Neural network performance of 66% does not look outstanding on itself. However, 
when compared with that of  Cox regression (56%) clearly indicates the suitability of neural 
networks as classification tool in complex clinical domains. (Lapuerta:95)  
 
Fraser et al carried out a study to investigate the effectiveness of radial basis function networks as 
an alternative data driven diagnostic technique of myocardial infarction. The study included clinical 
data from 500 cases. Results indicate that such networks achieved sensitivity of 85.7% and 
sensitivity of 86.1%. They suggest that Radial Basis Function Networks can reliably perform 
medical diagnosis. (Fraser:94) 
 
A multilayer feedforward network trained with backpropagation learning algorithm was used for 
differential diagnosis of brain disease (multiple sclerosis and cerebrovascular disease) 
(Gresgson:94). The input data consists of 22 presenting symptoms and follow up diagnoses of  689 
cases. Correct diagnosis of nearly 70% of the cases clearly indicates the need for improvement. 
However, these initial results are promising. 
 
Sordo (94) compared the performance of different neural network architectures and learning 
algorithms in the diagnosis of Down’s Syndrome in unborn babies. 8 data variables (age of the 
mother; gestation in weeks; and 6 serum markers) from 459 patients (410 control and 49 Down’s 
Syndrome) were used as inputs. 84% correct classification rates surpassed the 60-70% 
classification rate of current statistical method. However, it was at the expense of a high false 
positive detection rate of 35.5%, which compared with 6-7% of mathematical methods, suggest 
that, in practical terms, the cost-benefit derived from using neural networks in this particular 
application is not acceptable. 
 
Verrelst et al used a Bayesian posterior probability distribution in a neural network input selection. 
The network is designed to assist inexperienced gynaecologist in the pre-operative discrimination 
between benign and malignant ovarian tumours. Data from 191 consecutive patients was used to 
rain the network. Results from the neural network, validated by experienced gynaecologists, 
significantly outperformed a traditional method (RMI : Risk of Malignancy Index) used to assist 
gynaecologists in their diagnosis. (Verrelst:98) 
 
Serum electrophoresis is used as standard laboratory medical test for diagnosis of several 
pathological conditions such as liver cirrhosis or nephrotic syndrome. A multilayer perceptron 
trained using the backpropagation learning algorithm, and a Radial-Based Function network were 
used to implement an effective diagnostic aid system.  Preliminary results confirm the suitability of 
such neural network architectures as aids for medical diagnosis. (Costa:98) 
 
23 features extracted from 280 of inflammatory bowel disease were used to train an adaptive 
resonance theory mapping neural network (ARTMAP) and logistic regression. Each training 
example was independently examined and classified as either Crohn’s disease (205 cases) or 
ulcerative colitis (75 cases). Neural network results were compared with those from logistic 
regression. (Cross:98) 
 
2.2. Image analysis and interpretation 
 



Imaging is an important area for the application of ANN pattern recognition techniques. 
Particularly in medicine, pattern recognition is widely used to identify and extract important 
features in radiographies, ECTs, MRIs, etc. Egmon-Petersen et al present an excellent up-to-date 
review on image processing and neural networks. 
 
Aizenberg et al present examples of filtering, segmentation and edge detection techniques using 
cellular neural networks to improve resolution in brain tomographies, and improve global 
frequency correction for the detection of microcalcifications in mammograms.  
 
Miller, et al trained different neural networks (NNs) to recognise regions of interest (ROIs) 
corresponding to specific organs within electrical impedance tomography images (EIT) of the 
thorax. The network allows automatic selection of optimal pixels based on the number of images, 
over a sample period, in which each pixel is classified as belonging to a particular organ. Initial 
results using simulated EIT data indicate the possible use of neural networks for characterization of 
such images. 
 
Hall et al compared neural networks (cascade correlation) and fuzzy clustering techniques for 
segmentation of MRI of the brain. Both approaches were applied to intelligent diagnosis. Results, 
validated by experienced radiologists provided good insights as to the suitability of the applied 
techniques for automatic image segmentation in the context of intelligent medical diagnosis. 
 
Rajapakse and Acharya implemented a self-organizing network multilayer adaptive resonance 
architecture (MARA) for the segmentation of CT images of the heart. Similarly, Däschlein et al 
implemented a two layer neural network for segmentation of CT images of the abdomen. The 
method required the discrimination of various tissues like kidney, liver, bone and pathologic tissue 
like renal calculus and kidney tumour.  
 
An ANN was successfully applied to enhance low-level segmentation of eye images for diagnosis 
of Grave's ophthalmopathy (Ossen:94). The neural network segmentation system was integrated 
into an existing medical imaging system. The system provides a user interface to allow interactive 
selection of images, neural ne twork architectures, training algorithms and data.  
 
In another study, Özkan et al.(90) used neural networks trained with the backpropagation learning 
algorithm for segmentation and classification multi-spectral MRI images of normal and 
pathological human brain. Results indicate that sharp and compact segmentation of MRI images 
can be obtained with neural networks with a small architecture. Anthony et al (94) evaluated the 
performance of neural networks (NNs) in image compression of lung scintigrams. They discussed 
the suitability of NNs, and presented limitations and recommendations with special reference to 
medical imaging.  
 
A multi-module system was used to focus, segment and classify lung-parenchyma lesions in 
standard chest radiographies. A Laplacian-of-Gaussian kernel filter is applied to the X-Ray images 
to remove low frequency components, while preserving detail contrast. An input mask of 19x19 
units serves as input to the classification module, which consists of a feedforward network. The 
output of the network identifies regions of interest (ROIs) in the image, which later are analysed by 
other modules in the system. (DeDominicis:94).  



 
Houston et al (94) compared an expert system rule induction and a neural network to determine the 
optimal diagnostic strategy for colorectal cancer using magnetic resonance imaging (MRI) and 
tumour markers. Data from 39 patients was used to assess the suitability of such methodologies. 
Inconclusive results indicated that both methods strongly rely on large number of samples.  
 
ANNs have been used for automatic screening of blood cell classification from microscope images. 
82 objects extracted from 133 digitised images were isolated using classical image enhancement 
algorithms. A single layer perceptron trained with the backpropagation learning algorithm. The 
output produced a binary output, indicating whether the input corresponded to a normal or a 
pathologic cell network correctly classified 65 out of 82 objects. (Karakas:94) 
 
Xing (94) and Zheng (94) are two of multiple examples of neural networks applied to pattern 
recognition in mammograms. Xing et al used 14 image features extracted from mammograms by 
experienced radiologists. A pyramidal neural network detects malignant tumours or clustered 
calcifications in pre-processed mammograms. Results indicate that abnormal patterns observed in 
mammograms can be mapped into a unique data set. Similarly, Zheng et al used a multistage neural 
network (MNN) for locating and classification of microcalcifications in digital mammograms. The 
network is trained using backpropagation with Kalman filtering. Experimental results show 100% 
detection with a false positive detection rate of less than 1 microcalcification cluster per image. 
 
2.3. Signal analysis and interpretation 
 
Dokur, et al used a Kohonen neural network to detect four ECG waveforms. The network was 
trained with data from the MIT/BIH Arrhythmia Database. The database contains 48 half -hour 
ECG recordings. 
 
A multilayer perceptron was trained to differentiate between Contingent Negative Variation (CNV) 
evoked response waveforms of patients with Huntington’s disease, Parkinson’s disease and 
schizophrenia (Jervis:94). Data from 47 patients (20 schizophrenic, 16 Parkinson’s disease and 11 
Hungtinton’s disease) and 47 control subjects was used in the study.  Seventeen CNV features were 
used as inputs to the network. Results are promising with sensitivities greater than 0.9 being 
considered as clinically useful. However, results could be improved given more data.  
 
Sordo (99) implemented a knowledge-based neural network (KBANN) for classification of  
phosphorus (31P) magnetic resonance spectra (MRS) from normal and cancerous breast tissues. 
Data from 26 cases was used as input to the network. A priori knowledge of metabolic features of 
normal and cancerous breast tissues was incorporated into the structure of the neural network to 
overcome the scarcity of available data. Classification rates of 62.4% for “knowledge-free” neural 
networks and 87.36% for KBANNs showed how KBANNs outperformed conventional neural 
networks in the classification of 31P MRS. This indicates that the combination of symbolic and 
connectionist techniques is more robust than a connectionist technique alone. 
 
Waltrus et al reported results from the application of tools for synthesizing, optimising and 
analysing neural networks to an Electrocardiogram (ECG) Patient Monitoring task. A neural 
network was synthesized from a rule-based classifier and optimised over a set of normal and 



abnormal heartbeats. The classification error rate on a separate and larger test set was reduced by a 
factor of 2. Sensitivity analysis of the synthesized and optimised networks revealed informative 
differences. Analysis of the weights and unit activations of the optimised network enabled a 
reduction in size of the network by a factor of 40% without loss of accuracy. 
 

2.4. Drug development 
 
Weinstein et al (92) at the National Cancer Institute, USA implemented a neural network for drug 
development. The network predicts a drug’s mechanism of action from its pattern of activity 
against a panel of 60 malignant cell lines. The network correctly classified 91.5% of presented 
anticancer agents (drugs) according to their mechanism of action. Compared with 85.8% correct 
classification rate of linear discriminant analysis and standard statistical techniques, neural 
networks clearly show their suitability to classify complex data. 
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