Liquid Crystal Display Technology

Gregg Cianfrini
Introduction

- Liquid Crystal Display (LCD) technology is a critical facet of the electronics industry
- Readily available, relatively inexpensive way to provide detailed feedback
Topics of Discussion

- Reasons for use
- Technology overview
- Active v. Passive Matrix displays
- Addressing Methods
- Performance Enhancement Techniques
Reasons for Use

- Inexpensive (compared to other display technologies)
- Compact
- Versatile
- Low Power Consumption
- Proven Technology
Technology Overview

- Liquid crystal sandwiched between electrodes, alignment layers, glass, and polarizers

- Most common liquid crystal structure used is ‘twisted nemantic’ (TN)
 - Light enters first polarizer into helical liquid crystal
 - Rotated light exits the second, offset polarizer

- Apply bias across electrodes - result: dark area
 - Crystal molecules no longer have helical structure
 - Light not rotated - blocked by second polarizer
Tech Overview - Color & Contrast

- Types of LCD contrast - reflective and transmissive
- Grayscale achieved by varying bias across cell

- Color typically achieved through color filters
 - Must be capable of passing white light for full color
 - Other methods are currently being explored
- Color via filters decreases already inefficient light transmission
Passive vs Active Matrix Displays

- Two different methods for producing multi-bit images

- Both rely on ‘slow’ electrical response of crystal to retain a bit for duration of scan time

- Directly related to addressing schemes
Passive Matrix

- Row & Column approach
- Apply small bias to perpendicular lines of electrodes
- Bias strong enough to darken bit at line intersection
- Multiplexed addressing scheme
- Advantage: Simple to implement
- Disadvantage: Can cause distortion (‘ghosting’ or ‘crosstalk’)

Active Matrix

- Each cell has its own thin-film transistor (TFT)
- Addressed independently from behind LCD
- Direct addressing scheme
- Advantages: Sharp display, better viewing angle, 40:1 contrast
- Disadvantages: Need better backlight, complex hardware
Addressing Methods

- Multiplexed - used for passive matrix et al
- Direct - highest contrast, wide temperature range
- VGA/SGA/XGA interfaces available
- Serial interfaces available (similar to assembly addressing of an I/O port)
Performance Enhancement Techniques

- Goals: Better response, greater contrast, greater pixel density, and lower power consumption

- Several tricks employed / being developed to increase functionality
 - Sub-pixel addressing
 - Material experimentation
 - Multi-layer designs

- 3-D LCD displays
PET: Sub-Pixel Addressing

- Old algorithm applied to new technology
- Uses optical illusion to increase perceived resolution
- Complimentary color pixels eliminate need for full pixel to be used

Source: Gibson Research Corporation - http://grc.com/ctwhat.htm
PET: Material Experimentation

Goals:
- Improve response
- Expand operational environment

Heaters employed for low-temp conditions
- “Barrier coatings” protect from contamination by conductive particles

Liquid crystal material must be carefully chosen for correct viscosity at desired operating temp.
PET: Multi-layer Designs

- Greater brightness per unit of power or extended battery life
- Needs no filters to generate colors
- Sharp, Toshiba are important contenders in this field
- Currently, contrast needs improvement (~7:1 reflectivity)

Source: EDTN
http://www.eet.com
PET: 3-D LCD Displays

- Current work by Phillips laboratories
- Goal: To create a 3-dimensional display without the need for special glasses
- Combination of active-matrix LCD with lenticular lens to achieve stereoscopic effect
- Applications: medical imaging, entertainment
Summary

- LCD technology is an immensely powerful tool for system feedback
- Different addressing schemes and display implementations have various trade-offs
- Several techniques are being employed to increase LCD functionality - plenty of room for discovery!