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Abstract-The paper presents the control design for Antilock 
Braking Systems via the Sliding Mode approach. In this study we 
formulate the problem as that of extremum searching in a highly 
uncertain situation. We consider the friction force as an output of 
the dynamic system which includes mechanical motion equations 
and the hydraulic circuit equations. This setting is  complicated 
by the optimized function being a priori unknown, and the input 
(slip) not being measurable. 

I. INTRODUCTION 
HE main issue of concem during braking on a slippery T surface is that the wheels of the car may lock. This 

phenomenon is strongly undesirable. The friction force on 
the locked wheel is usually considerably less when sliding on 
the road. Furthermore, while the wheels are locked, steering 
becomes impossible, leading to loss of control of the vehicle. 

The main difficulty arising in the design of Antilock Braking 
System (ABS) control is due to the strong nonlinearity and 
uncertainty in the problem. It is difficult and in many cases 
impossible to solve this problem by using classical linear, 
frequency domain methods. 

A typical ABS measures the wheels’ angular speed and 
possibly linear acceleration. Then the decision is made if the 
wheel is about to lock. If it is, the pressure in the brake cylinder 
is reduced until the angular velocity of the wheel exceeds 
some threshold value. At this time the pressure is allowed to 
increase. Such algorithms produce noticeable vibrations in the 
car. 

Several results have been published coupling the ABS prob- 
lem and the VSS design technique [4], [ 5 ] .  In these papers the 
authors design sliding-mode controllers under the assumption 
of knowing the optimal value of the target slip. A problem 
of concem here is the lack of direct slip measurements. In 
all previous investigations the separation approach has been 
used. The problem was divided into the problem of optimal slip 
estimation and the problem of tracking the estimated optimal 
value. 

Our goal is to obtain a control algorithm which allows the 
maximal value of the tire/road friction force to be reached 
during emergency braking without a priori knowledge of the 
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optimal slip. The algorithm we develop below allows one to 
track an unknown optimal value even in the case that the 
value changes in real-time. 

11. h‘fATI-IEMATICAL MODEL OF THE SLII’PING WHEEl 

The simplified four-wheel vehicle brake model without 
lateral motion contains equations describing the mechanical 
motion of the wheel and the brake hydraulic system dynamics. 
In this section the mechanical equations of the rotating wheel 
with slipping are considered. Neglecting lateral motion and 
yaw, the mechanical model consists of the rotational dynamics 
and linear vehicle dynamics. 

A .  Rotational Dynamics 

modeled by the equation 
The rotational dynamics of the ith wheel ( i  = 1. . . . ,4) is 

where 
w, is the angular velocity of the wheel 
J is the moment of inertia of the wheel about the axis of 

Tb, is the brake torque at ith wheel 
R,FL is the tire/road torque produced by the friction reaction 

TdL is the engine torque which is assumed to be zero during 

rotation 

force 

braking. 

B .  Linear Dpnamics 

equation of motion 
The linear dynamics is described by standard Newtonian 

i= I 

where 
0 is the linear velocity 
F, is the aerodynamic drag force, which is modeled a\  

F, ir the tire/road friction force for the / th  wheel. 
F, = .4c1z.i,2 

C. Tire Friction Force Models 

The crucial point is the model of the friction forces F , .  
These forces depend on the road surface, tire, weather and 
many other conditions. The Pacejka model [ 3 ]  has been used in 
many studies. In this model it is assumed that friction force at 
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Fig. 1 .  Pacejka tire model. 

each wheel during braking is a nonlinear function F, = E, ( k , )  
of the relative slip IC, ,  defined as 

R,w; - v 
k ,  = _______ 

11 

for the case of braking, when 

(3) 

and as 

(5) 

for the acceleration case when 

R,w, > t i .  (6) 

The values of the function F, ( k , )  were obtained experimen- 
tally for different types of surface conditions. Experiments 
showed that in the region k,  > 0 the function has a single 
global extremum-maximum and in the region I C ,  < 0 a min- 
imum. The form of the function F, for k ,  < 0 is shown in 
Fig. 1.  

We consider a more general tire model which does not 
contradict the Pacejka model described above, but includes 
it as a particular case. 

It will be assumed that each friction force F, is a nonsta- 
tionary function of the slip k ,  

F, = FL(t, k )  (7) 

with bounded partial derivatives 

and such that, for every t an inequality 

k;F;( t .  k ; )  2 0 (9) 

is maintained, and the function F, has a unique global max- 
imum at 

and a unique global minimum at 

Fig. 2. ABS structure. 

By assumption F, is a sufficiently smooth function of kt  
in the regions k:, > 0 and k ,  < 0 and in €-vicinity ( E  > 0) the 
extrema1 points k: and k,, it satisfies the conditions 

and 

111. MODEL OF THE BRAKE HYDRAULIC SYSTEM DYNAMICS 
The hydraulic system has the standard structure shown in 

Fig. 2. 
The common part of the system consist of a master cylinder, 

pump and low pressure reservoir. For each wheel there are 
two valves: ii build valve, a dump valve and a wheel cylinder. 
The valves are on/off type devices, and can be only in two 
positions: closed/open. 

The pressure created by the driver and the pump is trans- 
ferred to the wheel cylinder only if the build valve is open 
and the dump valve is closed. If the build valve is closed and 
the dump valve is open the pressure in the wheel cylinder 
decreases due to the fluid flow in the direction of the low 
pressure reservoir. The case when the build valve and the 
dump valve are open is not allowed, but it is possible to have 
these valves closed at the same time. In this case, neglecting 
the fast transition process in the hydraulic line, the pressure in 
the wheel cylinder can assumed to be constant. 

The flow in and out of the hydraulic circuit for the zth wheel 
cylinder can be modeled as a flow through an orifice [6] 

Qt = AIQL/= - A m 2 ,  /II..-) (16) 

where Pp is the constant pump pressure, Plow is the constant 
reservoir pressure, A I ,  A2 are constants representing the orifice 
area, p is the density of the fluid. P, is the hydraulic pressure 
at the valves from the ith wheel cylinder side. Neglecting 
the inertial properties of the fluid and the resistance in the 
hydraulic line it will be assumed that the pressure in the wheel 
cylinder is also equal to P,. 
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The coefficients (dl,. c d z r  are in fact the control input\ which 
can take the values 0 or 1 depending on the corresponding 
valve heing open or closed. 

If the nonlinearities and temperature dependence are ne- 
glected, the brake torque 7;,i is a linear function of the brake 
pre s cure PI 

TI = (Pt - pc,,,t)At, ~ I B F ~ ,  (17) 
where Pout is a push out precwre; A,, < ,  11 B F ,  7 , are constants 
(wheel cylinder area, mechanical efficiency, brake factor, 
effectii e rotor radius). 

IV. PROBLEM STATEMLNT 

Assuming that the engine torque is equal to zero dunng 
braking and neglecting the aerodynamic drag force, the full 
model of the plant described above is the ninth order nonlinear 
system 

JLJ ,  = -Thl sgn (WO - R, F,, (18) 

Mil = F, (19) 

(20 ) 

(21 

4 

1 = 1  

Fl = F,(L k), 
Red, - 1 1  

L, =- 
i' 

(23) 

where / = 1 , . . . , 4 .  
There are eight control inputs d l l ,  cl/2,, I = 1, . . . ,4, which 

can take values 0 or 1 with constraints c d l ? r , j J ,  = 0. 
In this study it was assumed that only the angular velocities 

w,  and the pressures P, are accessible for measurement. 
The simplified problem of designing antilock brake control 

can now be formulated as follows: 
For the system (18)-(23) to design a control algorithm 

which steers the slip at each wheel k ,  to its extrema1 value 
lc,,(t) and tracks this value during braking. 

The objective considered is, of course, just a simplified 
version of the problem, since it  does not take into account 
the lateral motion of the car (it is, actually, a car on rails) 
but the method can be easily modified for the general uroblem 
including brake toruue proportioning in oruer to avoid the skid. 

V. ALGORITHM OF THE OPTIMUM SEARCH FOR ABS 

Two versions of the control algorithm with different levels 
of complexity were developed. These were based on different 
approximations of the hydraulic system model. In the first 
version the static model of the hydraulic system is considered. 
In this case it is assumed that T b ,  are control variables, which 
can be switched by closing and opening the valves from its 
lowest value TFln = 0 when (;ill = 0. ('$2, = 1, to the 
maximal value 

(24) T l F  = (PI] - ~ o , l f ) i ~ l I ,  ~ / B F T ,  

when /.,11, = 1. r d z r  = 0. 

The second version was based on the first order model of 
the hydraulic system dynamics (23) for each wheel. 

The optimal braking problem is solved for two models and 
with the assumptions that the current values of the friction 
forces 

and the hydraulic pressures, can be directly measured. In 
the following section we will demonstrate the design of 
the sliding-mode observer for estimating F, by using the 
measurements of the angular velocity U, and the pressure P,. 

A. Algorithm Developpnzent 

the trajectories of the system (18)-(23) we obtain 
Differentiating = F ( t ,  k L ( l ) )  with respect to time along 

r 

This equation shows that even if the brake torque T,,, 
is considered as a control variable, which means that the 
hydraulic system dynamics is neglected, the main difficulty 
to control the friction force is in the fact that the sign of 
the coefficient i )F,/dkL is unknown. Due to the different road 
conditions the current value of the slip A.,(t) can be more than 
the the optimum slip during braking k,, or less than k,, and, 
therefore, (aF, / i )k , )  > 0 or ( d F , / 3 k Z )  < 0. respectively. And 
the value of A.,, is not known a priori 

B. Fir-st Ver-sion o j  the Algor-ithm 

In the first version of the algorithm there is no pressure 
controller since we consider the static model of the hydraulic 
system assuming that the braking torque is switched from 
minimal 'rb,,,, = 0 to maximal Th,,, value by the following 
logic 

where C > 0. u( t )  is an increa5ing function of time and 

1. if E >  0 
0. if E <  0 '  

This corresponds in the static case to 

for example, if a ( t )  = :-If we have 

It can be demonstrated that (30) results in the convergence 
of y l  to a desirably small vicinity of the optimal value 
!/*I = F ( t ,  k * , ( t ) ) .  
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Fig. 3. Periodic switching function. 

Substituting (30) into (26) we obtain 

The condition (36) can be rewritten as 

where C1 is maximum of IA;v1 

On the other hand, condition (37) is equivalent to 

aF,(L. kz( / , ) )  
sign [ a k ~  ] ('i + C A , )  > 0. 

According to the assumption (12), (aF;( t ,  k i (L ) ) /ak ; )  > 0 in 

$, = A , ( ~ )  + B ~ ( ~ ) ~ , ( ~ ~ ~  (a( t )  + cyz)) (31) the &vicinity of the origin k,  = 0. Since for the case of 
braking k ,  ~2 0, all y, are also negative and the inequality (41) 
can always be fulfilled by increasing 5.  

Due to the assumptions (S), (l4), (15) the inequality oppo- 
site to (40) defines the vicinity of the optimal point /L. By 
choosing parameters C, ci and T b  Inax appropriately this region 
can he made arbitrarily $mall. Outside this area sliding mode 
exist, the variable yz is increasing and hence k ,  tends to k*z. 

where 

R,2J-lyz + M-yl + k,)  c y J  

(32) 
d F, +- dt  

(33) C. Second Kersion of the Algorithm 
d F  1 
ak., 21 B, ( t  ) = -T6 -R, 

Better performance can be obtained by taking the hydraulic 

but the system state variables. We design the manifold in the 
state space which leads to convergence of the friction force to 
the optimal point or, at least, to within desirably small vicinity. 

we that w~ > O during braking and hence 'grl (w~) = system dynamics into account, In this Case T6, are not controls, 
By introducing new variables 

(34) z,  = .(t) + cy, 
(31) can be rewritten as It can be shown that a relation of the form 

i, = ci + CA, + CB,+(sin ( z , ) ) .  

IC& > /CA,  + 51. 

(35) R , J - ~ T ~ ~  sgn (wl) + R ; J - ~ Y ,  
4 

+ M-'(l + k z )  c y J  = Ksiri(u(t) + Cy,) (42) Under the conditions 

J=1 (36) 
sign (lr + C A i )  = -sign (CBi) (37) 

the function in the right hand side of (35) alter- 
nates positive and negative values on the intervals 
. . . , (-T. 0), (0, T), (T, 2 ~ ) .  . . . as illustrated in Fig. 3. 

Case a )  corresponds to (aF, /ak,)  > 0, casc b) corrcsponds 
to (dF; /Uk;)  < 0. The direction of motion of z on each interval 
is shown by arrows. 

So if (36) and (37) are satisfied in both cases we obtain 
sliding on one of the manifolds 

zi - a1 = 0 (38) 

whcrc I is an integcr number (U, f l ,  & 2 ; .  . .). 
From (38) and (34) it follows that 

cy, = -o(t)  + 7r l .  (39) 

This equality means that yi = Fi(t ,  k : i ( t ) )  is a decreasing 
function of time and, therefore, it tends to the minimum with 
the rate n no matter what the sign of the partial derivative 

forces y, to converge to the &-neighborhood of the value 

The parameters of the algorithm (r, K and C should be 
chosen to satisfy the accuracy and rapidity requirements on 
the extremum search. Then we design the pressure controller 
so as to maintain (42). 

y*2 = F,(t.k*z(L)). 

Substituting (42) into (26) we obtain 

y L  = A , @ )  + B,(t)s in(o( t )  + C,y) (43) 

where 

aFl( t .  k l ( t ) )  
at A;( t )  = (44) 

(45) 

2 = 1:..,4. 
As before, by introducing a new variable 

(43) can be rewritten as aF/alc is. 

tions (36)  and (37) are fulfilled. 
The variable yz is decreasing until the sliding mode condi- 

?L = ir + C A ,  + CB, sin ( z ~ ) .  (47 1 
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As can be shown by using an appropriate Lyapunov function, 
if the condition 

holds, the variable z,  remains in the r/2-vicinity of one of the 
points 7rk% where I is an integer 1 = . . . , -2,  -1.0.1.2. . . . , 
which is closest from the left or from the right from its initial 
condition z,  (0). 

It implies that yz is decreasing with the "mean" rate -6. 
The condition (48) holds if 

(49) 
1 aF,(t. k , ( t ) )  1 > l6v + I('A,vl 

Due to the assumptions on the function F, the condition (48) 
is violated only in the neighborhood of the extrema1 point k*, .  
Therefore, y, will decrease with the rate w ,  until it will reach 
this neighborhood. Correspondingly, the slip k, will reach the 
vicinity of the optimal point k*%. 

The second version of the algorithm requires a pressure 
controller which supplies the necessary pressure in order to 
obtain the desired braking torque T?. The desired torque is 
obtained from the condition that (42) satisfies 

ak, lCKl . 

4 

TP =-R,y, - R F 1 J M - l ( 1  + k , ) x ? / ,  
3=1 

+RLIJKsin(cr(t) + Cy,). (50) 

The desired pressure P:" can be obtained from (22) 

Pfrs = Pout + (A, ,~BFT.)- 'T~".  (51) 

The control algorithm is the following 

('dlz = $(p:p5 - pt 1. 
Cd2, = '$(pL - p?'). 

(52)  
( 5 3 )  

The equality 

represents a sliding manifold in this case. 
Sliding mode occurs if the condition of its existence [ 2 ]  

d(P, - Pzd"") 
< O  d t  (Pl - P,""") 

holds. 
Equation ( 5 5 )  is equivalent to the inequalities 

( 5 5 )  

(57) 

which are restrictions on the rate of Plies and can be satisfied 
by appropriate choice of parameters. 

In sliding mode the condition (42) is fulfilled and, therefore, 
the system will converge to within an arbitrary small vicinity 
of the optimal point. 

VI. THE FRICTION FORCE OBS~RVER 

As mentioned in the previous section, the realization of the 
control algorithm requires information on the friction force. 
Since this quantity cannot be measured directly, an observer 
is developed which allows us to obtain friction force values 
using measurements of the angular velocity w of the wheel 
and the pressure P in the hydraulic system, which defines the 
braking torque Tb. 

The friction force observer 171 is based on the equivalent 
control method. The observer provides extremely accurate 
estimates of the friction force and is tolerant to parameter 
mismatches and random disturbances. 

A.  Observer Structure 

The equations of the observer coincides with the corre- 
sponding equation (1) .  The model for each ,i = 1. . . . , 3  has 
four inputs which are: engine torque T d i ,  angular velocities 
of the wheels wi, brake torque Tbi and input r/; instead of 
the friction force in the equation of the real wheel. The only 
output of the model is an estimate L J ~  of the angular velocity 
of the wheel 

( 5 8 )  J G j  = -R,k; - ybi SgII ( w i )  + rii. 
The function Vi is picked as 

(59) 

where Wi = wi - 2; is a tracking error of the angular velocity 
and Mi :> 0 is a sufficiently large constant. 

- - - 1wisgll(w;) 

Subtracting (58) from ( I )  we obtain 

JSi  = - R, Mi S ~ I I  (W;) - R,, Fi, ( 60) 

Under the condition 

Mi > IIlilX { I Fz I } (61) 

the discontinuous feedback in the observer equation results 
in the tracking of the angular velocity of the wheel, when in 
sliding mode. During sliding W i  = 0 and the equivalent value 
of the variable V,  = -M; sgii ( . ;S i )  is equal to Fi 

I$p* = Fj(t ,  k i ( t ) ) .  (62) 

As shown in [ 2 ] ,  the equivalent value of the chattering with 
high frequency discontinuity can be obtained by using a 
lowpass filter. Note here that this chattering occurs inside the 
friction force observer loop and does not affect the behavior 
of the overall system. Since the chattering frequency of the 
inner loop can be assigned sufficiently high, a first order filter 
can be used. 

The equation of the filter is 

F, = W,f(S)r/l (63) 

where W i f ( s )  is a transfer function of the filter 

1 
W,f(S) = ~- TzfS + I ' 

The time constant of the filter T l f  is chosen to suppress 
the high frequency of the oscillations but not to disturb the 
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Fig. 4. Velocities and slip 
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Fig. 5 .  Friction force observer. 

relatively slow component Fi. The estimate of Fi on the 
output of the filter then was used in the above optimization 
algorithms. 

APPENDIX 

Below, we show the results of one of the simulation 
experiments when the optimization algorithm, together with 
the friction force observer was simulated with a one-wheel 
model for the case of Pacejka friction. The optimal value of 
the friction force was -3900 N at the relative slip I C ,  = -0.09. 

As can be seen from Fig. 4 the absolute value of the slip 
IC increases and then oscillates in the vicinity of the optimal 
value. The friction force shown in Fig. 6, correspondingly, 
converges to its optimum and the brake torque to the constant 
value. 

The performance of the friction force observer is shown 
in Fig. 5.  While the real friction follows the desired one for 
the optimal braking trajectory, the Friction Force Observer 
shows excellent tracking of the angular velocity signal and 
as a result, a very accurate friction force estimate. When the 
wheel friction force changes in the wide range from 0 N (wheel 
rolling without any slip) to 4000 N (with optimal slip value) 

........................... 

.. ........... 

...... ...... ............. 

..... , ......... ............ 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 
r l m ( s l  

Fig. 6.  Force, torque. 

I 

=~~~~ 400 1 
300 

2 w  

1w 
0 

1 1 2  1 4  1 6  1 8  2 2 2  2 4  
T“(.) 

Fig 7 Control, pressure 

the deviation of the estimate F from the real force F is less 
than 1 N as shows the magnified value of the error F - F 
in Fig. 5. 

In Fig. 7 the control signal is shown. The value 1 of the 
variable I N C  - DEC corresponds to open position of the 
build valve and closed position of the dump valve, as 0 
corresponds to the open position of the dump valve and closed 
position of the build valve. The control chatters with a very 
high frequency as the pressure tracks the desired value. In this 
simulation experiment it was assumed that the valves can be 
closed and opened with a desirably high frequency. In real life 
situation, there is of course, a restriction defined by mechanical 
characteristics of the valves. The delays in switchings will 
result in higher amplitude chattering. 
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