Microcontroller based Automatic railway gate control

 \mathbf{O}

By: Sonti Atchyuth

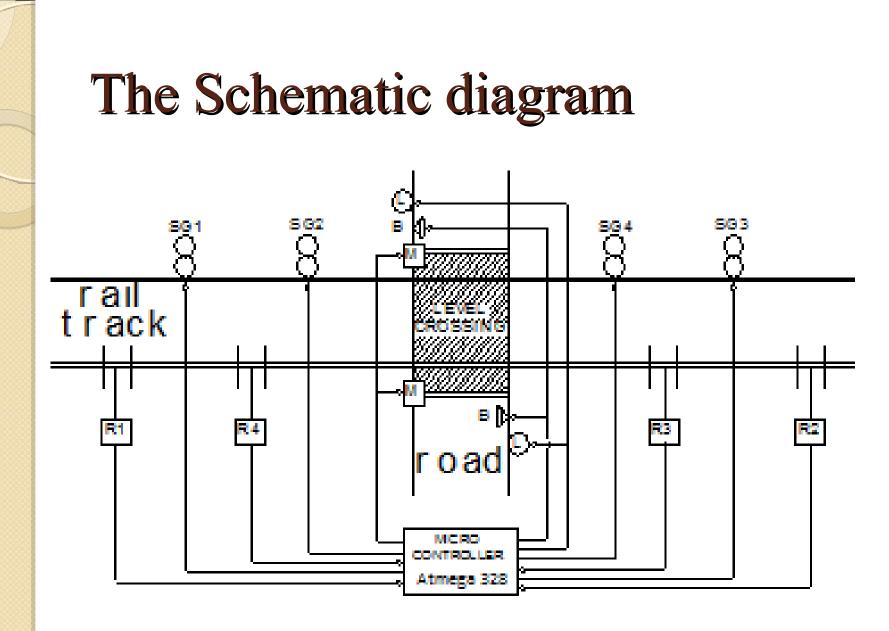
Agenda

- Present Scenario.
- Automatic railway gate system.
- Schematic diagram.
- Detailed description.
- The sensor set.
- Working of the sensor set.
- Microcontroller
- Algorithm
- Flow chart
- Advantages
- Disadvantages


The Present Scenario

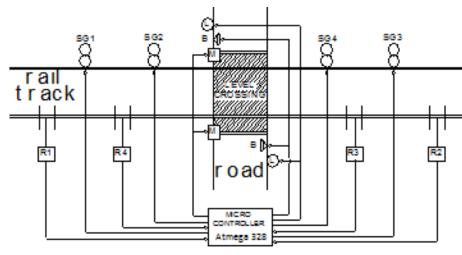
Generally the railway crossings are of two types
 1.Manned
 2.Unmanned

A lot of time is wasted due to this particular system.


Many errors occur due to the manual operation of the entire system.

The Real time example

The Automatic railway gate


- The arrival and departure of trains is done by the sensor set.
- The automatic railway gate has two main advantages:
 - 1. The reduction of time for which the gate is being kept closed.
 - 2. To provide safety for the road users by reducing the accidents as there is no scope of human errors in this case.

The Detailed Description

- Initial Signal Display
- Train Arrival Detection
- Warning for Road Users
- Sensing For Vehicles
- Gate Closing Operation
- Signal For Train
- Train Departure Detection
- Gate Opening

Interrupt

The Sensor Set

• A sensor set is used in all these places instead of a single sensor.

The sensor set consists of the following sensors:
1.) An IR sensor.
2.) A Sound sensor.
3.) A Thermal sensor.

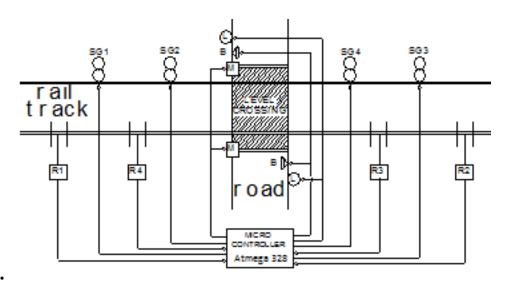
Working of the Sensor set

- All the above 3 sensors are ANDed together and they form a single sensor set.
- So to trigger the entire set, we need to trigger all the above sensors.
- The reason why we go for this type of sensor set is to make it triggered 'only' by a **train** thus this increases the reliability of the system.

Microcontroller

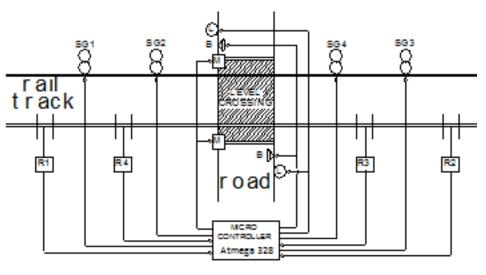
- This forms the brain of the entire system.
- Atmega 328 using arduino platform is used for the programming of this logic.
- Microcontroller "Atmega 328" performs the complete operations of
 - Sensing
 - Closing of the gate
 - Opening of the gate operation done by software code written on the controller.

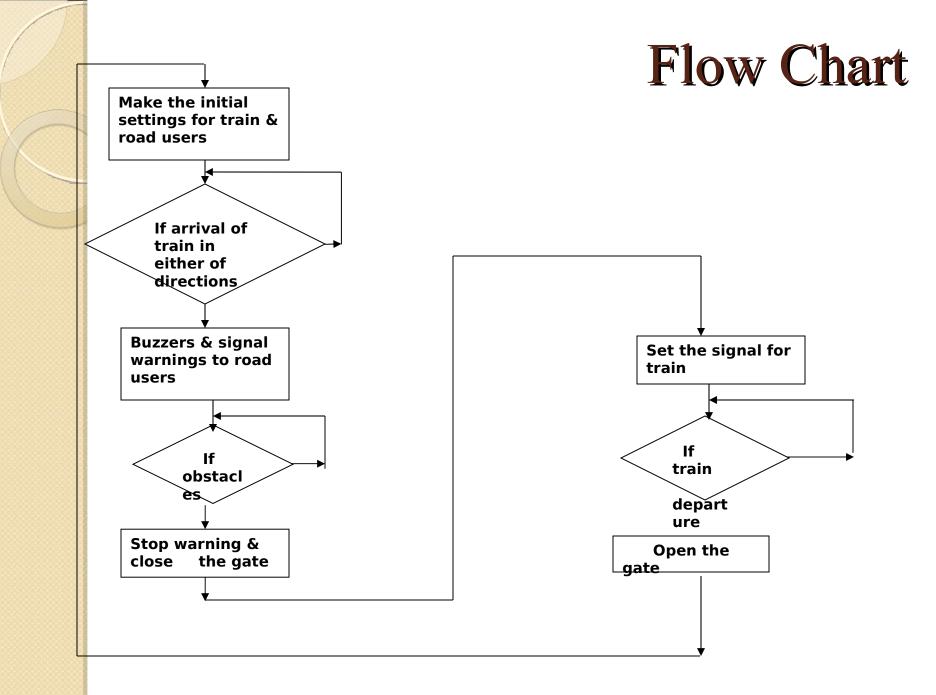
Arduino



Arduino IDE

Arduino - 0009 Alpha 📃	
File Edit Sketch Tools Help	
sketch_071012b	¢
<pre>int potPin = 0; int ledPin = 12; int potVal = 0;</pre>	Â
<pre>void setup() { pinHode(ledPin, OUTPUT); }</pre>	
<pre>void loop() { potVal = analogRead(potPin); digitalWrite(ledPin, HIGH); delay(potVal); digitalWrite(ledPin, LOW); delay(potVal); }</pre>	


 1: Make initial settings of the signals for the train and road users.



- 2: Check for the arrival of the train in either direction by the sensors. If the train is sensed go to 3 otherwise go to step 2.
- 3: Make the warning signal for the road users and set the signal for the train.
- 4: Check for the presence of any obstacle using sensors. If no obstacle, go to step5 otherwise repeat step4.

Algorithm contd...

- 5: Close the gate .
- 6: Change the signal for the train.
- 7: Check for the train departure by the sensors. If the train sensed to next STEP. Otherwise repeat STEP 7.
- 8: Open the gate.
- 9: Go to STEP 3.

Advantages

- Prevention of accidents inside the gate.
- Reliable machine, which operates the railway gate even without gatekeeper which makes it useful for operation at unmanned crossings.
- Power supply for the motor operation and signal lights is required.
- Battery which is charged by means of a solar cell can be used in remote areas where the power supply can't be expected.

Advantages of the microcontroller

≻Cheap

Open source hardware and software

Easy learning curve

➢Extensible

Disadvantages

- To establish the entire network it is quite a costly task. Since these are the issues of the government cost doesn't matter a lot.
- The Arduino board is a delicate device so it has to be handled carefully.

Conclusion

- Avoids manual errors & provides ultimate safety to road users.
- Gatekeeper not necessary and automatic operation of the gate through the motor.
- The mechanism works on a simple principle.

Queries?????