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a b s t r a c t

Gas turbine engines experience degradations over time that cause great concern to gas turbine users on
engine reliability, availability and operating costs. Gas turbine diagnostics and prognostics is one of the
key technologies to enable the move from time-scheduled maintenance to condition-based maintenance
in order to improve engine reliability and availability and reduce life cycle costs. This paper describes a
prognostic approach to estimate the remaining useful life of gas turbine engines before their next major
overhaul based on historical health information. A combined regression techniques, including both linear
and quadratic models, is proposed to predict the remaining useful life of gas turbine engines. A statistic
‘‘compatibility check” is used to determine the transition point from a linear regression to a quadratic
regression. The developed prognostic approach has been applied to a model gas turbine engine similar
to Rolls-Royce industrial gas turbine AVON 1535 implemented with compressor degradation over time.
The analysis shows that the developed prognostic approach has a great potential to provide an estimation
of engine remaining useful life before next major overhaul for gas turbine engines experiencing a typical
soft degradation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In gas turbine applications, maintenance costs, availability and
reliability are some of the main concerns of gas turbine users. With
conventional maintenance strategy engine overhauls are normally
carried out in a pre-scheduled manner regardless of the difference
in the health of individual engines. As a consequence of such main-
tenance strategy, gas turbine engines may be overhauled when
they are still in a very good health condition or may fail before a
scheduled overhaul. Therefore, engine availability may drop and
corresponding maintenance costs may arise significantly. For gas
turbine engines, one of the effective ways to improve engine avail-
ability and reduce maintenance costs is to move from pre-sched-
uled maintenance to condition-based maintenance by using gas
turbine health information provided by engine diagnostic and
prognostic analysis.

The performance of most physical assets degrades over time
and follows certain failure patterns. Research reveals that there
are at least six failure patterns actually occur in practice [1]. A
gas turbine engine, as a physical asset, has its own features in per-
formance degradations. Observations of gas turbine fouling in
operations [2–4] show that performance degradation over time
due to fouling is nearly linear with slight accelerated degradation
rate. Observations of gas turbine non-recoverable degradation over
ll rights reserved.

: +44 1234 751566.
time show that performance may degrade with nearly constant
rate in some cases [5,6], slightly increasing rate [6] or decreasing
rate [7] in others. Saravaramuttoo and Maclsaac [8] referred three
types of failure, i.e. instantaneous, delayed time-dependent and
purely time-dependent, to describe gas turbine failure/degradation
and concluded that the rates of degradation for gas turbines are
seldom known and not likely to be linear. Brothertom et al. [9] de-
scribed the gas turbine degradation mode as bathtub type.

Different prognostic techniques and relevant issues were re-
viewed and investigated by many researchers such as Brotherton
et al. [9], Bytington et al. [10], Roemer et al. [11], DePold and Gass
[12], Roemer and Kacprzynski [13], Brotherton et al. [14] and
Hess et al. [15] and these techniques are summarized as experi-
ence-based prognostics, model-based prognostics, evolutionary
prognostics, neural networks, state estimator prognostics, rule-
based expert systems, fuzzy logic based methods, etc. Linear
trending of gas turbine degradation is one of the prognostic
methods and has been effectively used for short term prediction
of engine health; examples of which are those given in [16,17].
Such trending methods base on linear regressions over time and
have the limitation that they may only be acceptable for short
term health prediction. Initial investigation of gas turbine diag-
nostic and prognostic analysis taking into account combined lin-
ear and non-linear degradation over time is shown in [18]. The
objective of the research in this paper is to further investigate
the linear and/or a non-linear prognostic approach for the predic-
tion of potential engine performance degradation into the future
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Nomenclature

Symbols
e residual
E() mean value
GPA Gas Path Analysis
H Influence Coefficient Matrix (ICM)
L summation of squares of deviations
mf fuel flow rate (kg/s)
n number of data points
N gas generator rotational speed
P total pressure (kPa)
skew() Skewness
t time
ta/2,n-2 upper (a/2) percentage point of the t-distribution with

(n � 2) degree of freedom
tp predicted pessimistic useful life
tu predicted useful life with a regression model
to predicted optimistic useful life
T total temperature (K)
V() variance
~x component health parameter vector

~z gas path measurement parameter vector
b0, b1, b2 regression coefficients
a accumulated tail probability of t-distribution
e measure of difference between actual and predicted

measurements; random error
g isentropic efficiency
k GPA Index
l mean value
r standard deviation
w prediction error or prognostic uncertainty
D deviation

Subscript
1–9 engine gas path station numbers (shown in Fig. 7)

Superscripts
^ estimated
T transpose
�1 inverse

Degradation pattern

x

t 

Pessimistic Useful Life (tp)
Predicted   Useful Life (tu)

Allowed 
Degradation 

Optimistic  Useful Life (to)

Failure rate pattern 

Current time

Fig. 1. Degradation and prognostic model.
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by taking into account possible change of degradation patterns
over time.

Gas turbine gas path diagnostics is an essential step towards
effective prognostic analysis. Different gas path diagnostic tech-
niques have been developed in the past. Typical ones are Gas Path
Analysis (GPA) and its derivatives [19–26], neural networks [27–
29], Bayesian Belief Networks [30], Genetic Algorithm [31–33],
Fuzzy Logic [34–36], diagnostics using transient measurements
[37,38], etc. This research field has been summarized by Li [39]
and Singh [40].

The forecasting of engine degradation or engine prognostics is
very challenging due to great uncertainty associated with gas tur-
bine design, manufacturing, ambient and environmental condition,
operating condition, duty missions, maintenance actions, etc. This
study explores the incorporation of prognostic and statistical
knowledge and develops a technical approach to predict the
remaining useful life of gas turbine engines. The approach is then
applied to a model offshore gas turbine application implanted with
soft compressor degradation over time to show the effectiveness of
the approach.

2. Gas path prognostic approach

2.1. Basic assumptions

Gas turbine degradation phenomenon is so complicated that no
any single diagnostic and prognostic approach can cover all scenar-
ios. Therefore, to make the diagnostic and prognostic approach de-
scribed in this study applicable it is assumed that

(1) Only engine soft degradation associated with performance
change (such as fouling and erosion) that develops gradually
over time is discussed in this study.

(2) Engine operates at the standard ISO ambient condition and
at maximum power throughout its life.

(3) Engine performance degradation follows a failure rate pat-
tern shown in Fig. 1 where a constant failure rate last for a
period of time followed by an increasing failure rate. This
assumption also covers the scenario where only constant
failure rate or increasing failure rate happens. Regular main-
tenance actions, such as online and off-line compressor
washing, do not change engine degradation patterns.
(4) The uncertainty associated with the prognostic analysis is
normally distributed around its true health and becomes lar-
ger into the future.

(5) Only major engine component degradations, such as com-
pressor and turbine degradations, are included in the analy-
sis and the degradation is described by the deviation of
isentropic efficiency and flow capacity from their clean
(un-degraded) value.

(6) Engine health analysis is carried out continuously from the
beginning of its operation. However, the frequency of such
analysis is dependent on the frequency of measurement data
sampling.

(7) Frequent/recurrent maintenance actions such as on-line and
off-line compressor washing are regularly carried out and do
not change the fault patterns.
2.2. Gas path diagnostics

Degradation can be recognized as the deviation in performance
from that when the engine was new. A non-linear GPA diagnostic
approach used in this study is the one developed by Escher and
Singh [25] and Li and Singh [26]. To assist the understanding of
such diagnostic approach a brief description of the method is pro-
vided as follows.
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Fig. 2. Linear regression model.
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At a given operating point and at certain time during operation,
a linear relationship between gas path measurement deviation
vector D~z and engine component health parameter deviation vec-
tor D~x, Eq. (1), can be obtained from engine performance model
~z ¼ f ð~xÞ by using a Taylor series expansion.

D~z ¼ H � D~x ð1Þ

where H is called the ‘‘Influence Coefficient Matrix” (ICM). Therefore,
engine performance degradation represented with D~x can be ob-
tained with Eq. (2) if the number of measurements equals the num-
ber of health parameters, or Eq. (3) if the number of measurements
is more than the number of health parameters.

D~x ¼ H�1 � D~z ð2Þ
D~x ¼ ðHT HÞ�1 � HT � D~z ð3Þ

The above method is called linear Gas Path Analysis (GPA). Due to
that engine performance rarely deviates linearly with degradation
and the linear approach may result in significant prediction errors
in diagnostic analysis. This leads to the development of a non-linear
GPA where the linear GPA is used iteratively until a converged solu-
tion is obtained (Newtom–Raphson method).

Accurate prediction of engine degradation with the GPA ap-
proach depends on a priori information of degraded components
and therefore confusing solutions may be obtained if different de-
graded components are pre-assumed due to lack of such informa-
tion. In order to isolate actually degraded component(s), a GPA
Index k defined in Eq. (4) is used to assess the accuracy of the pre-
diction solutions.

k ¼ 1
1þ e

ð4Þ

where e is a measure of the difference between the measured and
predicted deviations of engine gas path measurements.

All engine gas path components may degrade during operation.
To isolate the most severely degraded component(s) effectively,
component fault cases (CFC) representing possible combination
of degraded components that cover all the combinations of poten-
tial degraded components are assumed and the GPA diagnostic
search is then applied to each of the fault cases. The cases with
high GPA Indices indicate the most likely engine degradations.
The details of the approach are described in [26].

2.3. Linear regression for prognostic analysis

Once the engine health is analyzed with the non-linear GPA at
all individual moments in the past, engine future health could be
predicted with the obtained historical engine health data.

In the context of this study, the forecasting methods to be used
are the simple regression methods, such as linear and quadratic
regressions. Regression analysis is a statistical tool that can pro-
duce predictions and provide explanation of data.

Based on the assumption that gas turbine engines would expe-
rience a long period of soft degradation from the beginning of its
operation with a constant failure rate, Fig. 1, a linear regression
is applied first to the historical data to produce a regression line
for the purpose of prognostic analysis.

Suppose that the true relationship between engine health
parameter xi and time t is a straight line and that xi,k at each tk is
a random variable. The expected value of xi for each value of t is
presented by Eq. (5).

EðxijtÞ ¼ bi;0 þ bi;1t ð5Þ

where bi,0 and bi,1 are unknown regression coefficients. It is as-
sumed that each xi,k can be described by Eq. (6).
xi;k ¼ bi;0 þ bi;1tk þ ei;k; k ¼ 1;2; . . . ;n ð6Þ

where ei,k are random errors with zero mean and variance r2
i . The

random errors ei,k corresponding to different xi,k are also assumed
to be uncorrelated and normally distributed.

Fig. 2 shows a typical scatter plot of historical engine health
data over time and an estimated linear regression line. The value
of bi,0 and bi,1 can be estimated by a least squares method to obtain
a best fit to the data xi,k (k = 1,2, . . . ,n) where the sum L of the
squares of the deviations of xi,k, Eq. (7), from the true regression
line is minimized.

L ¼
Xn

t¼1

e2
i;k ¼

Xn

k¼1

ðxi;k � bi;0 � bi;1tkÞ2 ð7Þ

More details of the method can be found in many books, such as
[41]. The solution to Eq. (7) results in least squares estimators b̂i;0

and b̂i;1. Therefore, the estimated regression line is represented by
Eq. (8).

x̂i ¼ b̂i;0 þ b̂i;1t ð8Þ

Note that each pair of (xi,k, tk) satisfies the relationship shown in Eq.
(9).

xi;k ¼ b̂i;0 þ b̂i;1tk þ ei;k; k ¼ 1;2; . . . ; n ð9Þ

where ei;k ¼ xi;k � x̂i;k is called the residual describing the error in the
fit of the model to xi,k.

2.4. Quadratic regression model

In a situation where an increasing failure rate occurs linear
regression is no longer applicable. Therefore, a quadratic regression
could be a better solution for prognostic prediction. Fig. 3 shows a
typical scatter plot of engine health data over time and a quadratic
regression line to fit the data.

Similar to the linear regression, suppose that the true relation-
ship between engine health parameter xi and time t is a quadratic
line and that xi,k at each tk is a random variable. The expected value
of xi for each value of t is represented by Eq. (10).

EðxijtÞ ¼ bi;0 þ bi;1t þ bi;2t2 ð10Þ

where bi,0, bi,1 and bi,2 are unknown regression coefficients that
would have to be estimated. It is assumed that each xi,k can be de-
scribed by Eq. (11).

xi;k ¼ bi;0 þ bi;1tk þ bi;2t2
k þ ei;k; k ¼ 1;2; . . . ;n ð11Þ

where ei,k are random errors with zero mean and variance r2
i . The

random errors ei,k corresponding to different xi,k are also assumed
to be uncorrelated and normally distributed.

To find the coefficients (bi,0, bi,1 and bi,2) of the regression line
for n pair data (xi,k, tk), k = 1, . . . ,n, the least square estimator bi,0,
bi,1 and bi,2 are those values that minimize L, Eq. (12).
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L ¼
Xn

t¼1

e2
i;k ¼

Xn

k¼1

ðxi;k � bi;0 � bi;1tk � bi;2t2
kÞ

2 ð12Þ

Therefore, the estimated regression line becomes Eq. (13)

x̂i ¼ b̂i;0 þ b̂i;1t þ b̂i;2t2 ð13Þ

Note that each pair of (xi,k, tk) satisfy the relationship shown in Eq.
(14). More details of the method can be found in many books such
as [42].

xi;k ¼ b̂i;0 þ b̂i;1tk þ b̂i;2t2
k þ ei;k; k ¼ 1;2; . . . ;n ð14Þ

For both linear and quadratic regressions, the regression coefficients
determine the quality of the regression lines, Eqs. (8) and (13). The
reliability of the regression lines representing the true values of the
health parameters depends on the accuracy of the measurement
samples, the number of the measurement samples and the accuracy
of the GPA diagnostic analysis.

2.5. Transition of regression methods

In gas turbine applications, the degradation pattern of a gas tur-
bine engine over time is unknown. It could be linear, non-linear or
the combination of both. Based on published information [2–9], it
can be seen that the combined failure rate pattern shown in Fig. 1
is one of the typical degradation patterns of gas turbine engines.
For such a degradation process, the engine degradation develops
linearly with a constant failure rate during the first period of oper-
ation when engines experience soft and gradual degradation and is
then followed by an increasing failure rate during the second per-
iod of operation. Therefore, the prognostic prediction is started
with the linear regression mode. A compatibility check of moni-
tored points around the regression lines is continuously conducted
to determine if the quadratic regression model should be used to
replace the linear regression model, Fig. 4. It is important to accu-
rately determine a transition point where the prognostic model is
switched from the linear regression model to the quadratic regres-
sion model in order to have an accurate prognostic assessment.
When only linear degradation happens the linear regression model
will be continuously used. When only non-linear degradation hap-
pens the prognostic analysis will turn to quadratic regression mod-
el soon after the beginning of the operation based on the
compatibility check.

To determine the transition point for the transition from the lin-
ear regression to the quadratic regression, a compatibility check is
proposed in this study and carried out continuously in the prog-
nostic analysis to assess if current regression model fits actual fail-
ure rate pattern. If current regression model is valid, the variance of
new observations of the health parameters should continue to be
normally distributed around current regression line. Otherwise, a
different failure rate pattern and corresponding regression model
should be applied.
In the proposed compatibility check, two statistical parameters
are used in this study and they are Significance Level and Skew-
ness. To understand the concept of the Significance Level, a null
hypothesis is assumed, where the observations of the variance of
the health parameters are normally distributed. The probability
of rejecting the null hypothesis when it is true is called the Signif-
icance Level [41]. The Significance Level may vary from 0 to 1; a
lower value of the Significance Level would indicate that the null
hypothesis should be rejected and vice versa. A critical value of
the Significance Level is application dependent and should be
determined based on application statistics and past experience; a
too small value would allow an engine to degrade too much while
a too big value would overhaul an engine when it is still healthy. In
this research, a critical value of 0.2 is chosen for the Significance
Level in order to determine if the null hypothesis should be re-
jected. The approach and the software used to calculate the Signif-
icance Level is the Shapio–Wilk (S–W) statistic test [43] and the
SPSS for Windows [44], respectively. In a case where new observa-
tion data shift away from the current regression line with the Sig-
nificance Level becoming smaller and smaller, it indicates that the
current regression model is no longer valid and a different regres-
sion model should be applied to fit the data.

The Skewness is the measure of symmetry of data in a statistic
sense. Symmetric data should have a Skewness value near zero. A
negative Skewness value (skewed to the left) indicates that data
are bunched together above the mean but with a long tail below
the mean, while a positive one (skewed to the right) indicates that
data are bunched together below the mean but with a long tail
above the mean. Fig. 5 illustrates the notion of Skewness where
both probability density functions (PDFs) of the data have the same
expectation and variance; the one on the left is positively skewed
and the one on the right is negatively skewed.

The Skewness of random variable xi is denoted as skew(xi) and is
defined in Eq. (15).
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skewðxiÞ ¼
E½ðxi � liÞ

3�
r3

i

ð15Þ

where li and ri are the mean value and standard deviation of data
xi, respectively. More details of the Skewness can be found in [45]
and the software used to calculate the Skewness is the SPSS for Win-
dows [44].

In a case where a regression line does not match the actual fail-
ure pattern, the difference between the data and the regression
line, (xi,k � bi,0 � bi,1tk) or (xi;k � bi;0 � bi;1tk � bi;2t2

k), should be either
negative with the data showing on the upper side of the regression
line or positive with the data showing on the lower side of the
regression line. Therefore, a continuous decrease or increase in
the Skewness value indicates that a different regression model
should be used to fit the data.

Critical value for the Significance Level and the Skewness
should be defined in order to determine the transition point. How-
ever, such compatibility check is based on statistic information.
Therefore the frequency of sampling over time and the number
of total available data samples have significant influence on the
calculated values of the Significance Level and the Skewness. Cer-
tain crisp criterion for the transition only becomes meaningful
when the frequency of sampling over time and the amount of data
samples are determined.

2.6. Prognostic uncertainty

Once a regression line, Eq. (8) or (13), has been established, it
can be used to predict new or future health parameters. However,
the prediction error or prognostic uncertainty represented by Eq.
(16).

wi ¼ xi � x̂i ð16Þ

is strongly associated with time into the future and can be regarded
as a normally distributed random variable with a zero mean and a
variance around the predicted health at a future time of interest.
Such prognostic uncertainty is very difficult to estimate as it could
be affected by many factors, such as engine design safety margins,
manufacture tolerance, ambient and environmental conditions,
operating conditions, mission duties, maintenance schedule etc.
For example, an engine has to work with higher firing temperature
in hot days than in cold days when the same power output is re-
quired. Therefore the engine performance may degrade faster in
hot days. The manufacturing quality of gas turbine engines of the
same fleet may also be different due to manufacturing tolerance
and therefore ‘‘good” engines may degrade slower than ‘‘bad” en-
gines because of different firing temperature required to provide
the same power output. Due to the complexity of the degradation
uncertainty, engine operating field data and experience may pro-
vide good information for the estimation of prognostic uncertainty.

To assist current prognostic study and demonstrate the idea of
the whole prognostic system, a prognostic uncertainty model [41]
based on the variance of historical data of an engine is adopted as
follows.

Let xi,k be the future observation of an engine health parameter
at time t and x̂i;k be given by the fitted model of either Eq. (8) or
(13). The variance of prediction error wi ¼ ðxi;k � x̂i;kÞ is assumed
to have mean zero and variance estimated by Eq. (17).

VðwiÞ ¼ r̂i 1þ 1
n
þ ðt � toÞ2

Stt

" #
ð17Þ

where r̂i is the estimate of the standard deviation of x̂i;k and

Stt ¼
Xn

k¼1

t2
k �

1
n

Xn

k¼1

tk

 !2

ð18Þ
a 100(1 � a)% prediction error on a future observation xi,k at time t
is defined by Eq. (19).

x̂i;k � ta=2;n�2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2

i 1þ 1
n
þ ðt � t0Þ2

Stt

" #vuut ð19Þ

where n is the number of measurement samples used in the estima-
tion, ta/2,n�2 the upper (a/2) percentage point of the t-distribution
with (n � 2) degrees of freedom and a the cumulated tail probabil-
ity of the t-distribution. Such a prediction error is used as the esti-
mate of the prognostic uncertainty into the future.

The prognostic uncertainty is of minimum width at time (t = t0)
and increases as the t value (time or running hours) moves away
from current time into the future. The estimate of the prognostic
uncertainty described above is based on historical uncertainty of
engine health data inclusion of different existing influential factors
such as design and manufacturing quality of an engine, ambient
and environmental conditions, mission profiles, maintenance ac-
tions, etc. If these influential factors change in the future the prog-
nostic uncertainty may also change accordingly and such changes
are not considered in this study.

2.7. Determination of remaining useful life

Based on gas turbine historical data up to the current time of
operation, gas turbine degradation into the future can be predicted
with linear or quadratic regression with an upper and lower bound
of prognostic uncertainty determined by Eq. (19), Fig. 1. For the
sake of safety of gas turbine engines, gas turbine operators may
only use either lower bound or upper bound to determine the
remaining useful life depending on the direction of the variation
of health parameters over time – for those health parameters
decreasing over time, lower bound of prognostic uncertainty pro-
vides pessimistic prediction and is used to determine the remain-
ing useful life, and vice versa. Therefore, the prediction procedure
of remaining engine useful life is as follows:

� Allowed degradation for health parameters (thresholds) should
be determined.

� The time period from current time to the intersection point
between the predicted engine degradation line and allowed deg-
radation line is the estimate of the predicted remaining useful
life (tu).

� The time period from current time to the intersection point
between the lower prognostic uncertainty bound of the pre-
dicted engine degradation line (in case of health parameters
decreasing over time) and allowed degradation line is the esti-
mate of the predicted pessimistic remaining useful life (tp).

� Similarly, a predicted optimistic remaining useful life (to) can be
obtained but cause comparatively little worry to gas turbine
users.

� The actual remaining useful life should be between the pessi-
mistic and predicted engine remaining useful lives (tp and tu)
if the prediction is satisfactory.

2.8. Integrated diagnostic and prognostic approach

To apply the above diagnostic and prognostic techniques to gas
turbine applications, a diagnostic and prognostic approach, Fig. 6,
is proposed and explained as follows:

Step 1: Apply the GPA diagnostic approach to detect engine deg-
radation up to current time using available gas path measure-
ments. Such GPA diagnostic approach is able to diagnose major
engine gas path components, such as compressors and turbines.
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Fig. 6. Diagnostic and prognostics system for gas turbines.
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The selected measurements should be uncorrelated gas path mea-
surements that are sensitive to the degradation of these gas path
component degradations. Due to the statistic nature of the ap-
proach, the more the amount of measurement samples the better
prognostic results may be achieved.

Step 2: Apply the linear regression model to fit historical perfor-
mance health data and predict future engine health parameters.

Step 3: Conduct Compatibility Checks to determine whether the
regression model is compatible with the actual pattern of engine
failure rate.

Step 4: (a) If good compatibility is demonstrated, the linear
regression model will continue to be used. (b) Otherwise, the qua-
dratic regression should be used instead.

Step 5: Prognostic uncertainty over time into the future is esti-
mated in order to determine the upper and lower bounds of prog-
nostic uncertainty of the prediction line.

Step 6: Allowable engine degradation specified with a threshold
for each engine health parameter should be determined and the
estimated engine remaining useful life, including the pessimistic
useful life, can be obtained.
3. Application and analysis

The integrated diagnostic and prognostic approach described in
the previous section is applied to a model industrial gas turbine en-
gine simulated with gas turbine performance simulation software
in order to demonstrate the effectiveness of the approach.

3.1. Performance simulation and diagnostics of a model engine

The model gas turbine engine used in this study is a two-shaft
industrial gas turbine, similar to Rolls-Royce industrial AVON Mk
1535, that has one compressor, one burner, one compressor tur-
bine and one power turbine. The basic performance parameters
are as follows:
Power 
Total pressure ratio
 3.33

Nozzle Compressor 

turbine Intake 
Turbine entry temperature
 869 (�C)
Compressor     turbine 
Exhaust mass flow rate
 77.3 (kg/s)
 7
Power output
 15 (MW)

Burner 
Heat rate
 12,258 (kJ/kWh)
3  4

Generator 

5  6    7          8        9 1 2 

Fig. 7. Model engine configuration.
Cranfield University gas turbine performance and diagnostic soft-
ware [26] is used to create an engine performance model and sim-
ulate the clean and degraded performance over time. The model
engine configuration is shown in Fig. 7.
It is assumed that:

� The pattern of engine failure rate follows the one shown in
Fig. 1.

� The degradation in this gas turbine occurs due to significant
compressor degradation represented by the deviation of com-
pressor flow capacity and isentropic efficiency. Due to that these
two compressor health parameters are independent from one
another a particular case of degradation where the degradation
in flow capacity is double the degradation in compressor effi-
ciency is simulated in this study.

� The engine degrades at a constant failure rate from the begin-
ning of operation to 20,000 h of operation and then an increas-
ing failure rate occurs. The engine reaches �3% degradation in
efficiency and �6% degradation in flow capacity at 30,000 h of
operation.

� The measurement noise has a normal distribution around true
measurement values and the maximum level of measurement
noise for different gas path parameters is shown in Table 1 [46].

� Diagnostic assessments are carried out for every 500 h of oper-
ation. However, due to the statistic nature of the analysis in con-
cern more frequent data sampling will improve the prediction
accuracy. This is due to the fact that the measurement noise
can be assessed more easily and accurately and the obtained
regression lines will provide better prediction of true values of
health parameters.

� The engine is to be removed for an overhaul when the degrada-
tion in efficiency reaches �3%, or the degradation in flow capac-
ity reaches �6%.

The available gas path measurements for diagnostic and prog-
nostic analysis are chosen to be those shown in Table 2.

To demonstrate the proposed prognostic method, a typical com-
pressor degradation developed over time is implanted into the
model gas turbine engine (solid line in Figs. 8 and 9) and the cor-
responding degraded engine performance and gas path measure-



Table 1
Maximum measurement noise [46].

Measurement Range Typical error

Pressure 3–45 psia 0.5%
8–460 psia ±0.5% or 0.125 psia whichever is greater

Temperature �65–290 �C ±3.3 �C

290–1000 �C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:52 þ ð0:0075 � TÞ2

q
1000–1300 �C �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:52 þ ð0:0075 � TÞ2

q
Fuel flow Up to 250 kg/h 41.5 kg/h

Up to 450 kg/h 34.3 kg/h
Up to 900 kg/h 29.4 kg/h
Up to 1360 kg/h 23.7 kg/h
Up to 1815 kg/h 20.8 kg/h
Up to 2270 kg/h 23.0 kg/h
Up to 2725 kg/h 25.9 kg/h
Up to 3630 kg/h 36.2 kg/h
Up to 5450 kg/h 63.4 kg/h
Up to 12,260 kg/h 142.7 kg/h

Table 2
Instrumentation set.

Measurement Meaning

P3 Compressor exit total pressure (kPa)
P7 Compressor turbine exit total pressure (kPa)
T7 Compressor turbine exit total temperature (K)
P8 Power turbine exit total pressure (kPa)
T8 Power turbine exit total temperature (K)
mf Fuel flow rate (kg/s)
N Gas generator rotational speed (%)
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Fig. 9. Implanted compressor flow capacity degradation and predicted degradation
with GPA.
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ments are simulated. Then it is assumed that the implanted degra-
dation is unknown to the diagnostic system and the GPA diagnostic
system described in [26] is used to isolate and quantify engine
component degradation over time. The predicted degradation plot-
ted over time (dotted line in Figs. 8 and 9) representing the engine
degradation history is used in the prognostic analysis to estimate
potential engine remaining useful life.

3.2. Component diagnostic analysis using GPA approach

In diagnostic and prognostic analysis, the non-linear GPA is ap-
plied to all the engine historical data up to the current time to ana-
lyze the engine health degradation history. This includes isolating
the degraded engine component(s) using the concept of fault cases
and GPA Index and quantifying the component degradation [26].
Due to that the diagnostic analysis is not the focus of this paper,
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Fig. 8. Implanted compressor efficiency degradation and predicted degradation
with GPA.
the detailed component fault isolation and quantification is as-
sumed to be done successfully while the interested readers may re-
fer to [26] for more information of the process. Once the
degradation analysis is done for all individual points, the predicted
degradation for component health parameters over time can be
plotted up to the current time. Figs. 8 and 9 show the predicted
diagnostic results in dotted points in terms of the predicted degra-
dation of compressor efficiency and flow capacity, respectively. As
discussed in [26] the non-linear GPA is able to provide accurate
diagnostic results if engine gas path measurements are accurate.
Therefore the scattering of the points are due to the impact of mea-
surement noise that contributes to the diagnostic prediction errors
and the quantitative level of such prediction errors is more or less
similar to the measurement noise of the gas path measurements.
Due to the statistic nature of the prognostic method the amount
and the accuracy of measurements samples and the accuracy of
diagnostic analysis have great impact on the accuracy of prognostic
analysis. After the historical diagnostic information become avail-
able, the proposed prognostic approach is then used as follows.

3.3. Applying linear regression model for prognostic analysis

As the first step of the prognostic analysis, the linear regression
model is applied to the scattered data from the beginning of oper-
ation for both compressor efficiency and flow capacity degradation.

Figs. 10 and 11 provide an example of applying linear regression
to the scattered data of compressor efficiency and flow capacity
drops when it is assumed that the moment after 15,000 operation
hours is the current time.
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Fig. 10. Linear regression to scattered data of compressor efficiency at 15,000 h.
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Fig. 11. Linear regression to scattered data of compressor flow capacity at 15,000 h.
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Fig. 12. Significance level of compressor efficiency and flow capacity degradation
during engine operation.
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Based on the assumption that the acceptable degradation is
3.0% for compressor efficiency and/or 6.0% for compressor flow
capacity before a major overhaul, tp (the pessimistic estimate of
engine useful life) and tu (the predicted engine useful life with as-
sumed regression model) can be determined. For example in
Fig. 10 where future degradation of compressor efficiency is pre-
dicted, tp is around 27,000 h and tu around 43,000 h. Therefore,
with the prognostic prediction taking place at 15,000 h based on
the compressor efficiency data, the predicted remaining useful life
for the engine is roughly between 12,000 and 28,000 h. Similarly in
Fig. 11 where future degradation of compressor flow capacity is
predicted, tp is around 40,000 h and tu around 44,500 h. Therefore,
the predicted remaining useful life of the engine is roughly be-
tween 25,000 and 29,500 h. It can be seen by the comparison in Ta-
ble 3 that the predicted remaining useful life based on compressor
efficiency data provides more conservative result due to greater
scattering of the historical data. The significant difference between
the predicted remaining useful life based on efficiency data and
that based on flow capacity data is due to the significant difference
in prognostic uncertainties. Although the lower prognostic uncer-
tainty bound of the linear regression line for the compressor effi-
ciency data covers the implanted remaining useful life (Fig. 10),
it is very likely that the prediction of remaining useful life may
not be reliable due to that the linear regression model does not
take into account the situation where actual degradation pattern
changes in the future, such as the case in Fig. 11.

3.4. Compatibility checks

Once the prognostic analysis starts, compatibility checks of new
observation points are continuously conducted to determine
whether the linear regression model is still compatible with actual
Table 3
Predicted remaining engine useful life at 15,000 h of operation.

Remaining engine useful life at 15,000 h of operation

Pessimistic prediction
considering prognostic
uncertainty (tp � 15,000)

Prediction with
quadratic regression
model (tu � 15,000)

From compressor
efficiency drop
data (Fig. 10)

12,000 28,000

From compressor
flow capacity drop
data (Fig. 11)

25,000 29,500

Based on implanted
degradation

15,000
failure rate pattern of the engine. If the regression model is still fit,
the new observation points distribute normally around the linear
regression line.

Fig. 12 shows the Significance Levels of compressor efficiency
and compressor flow capacity degradation derived from the S–W
tests from the beginning of operation until 25,000 h of operation,
respectively. The Significance Level for compressor flow capacity
and compressor isentropic efficiency degradation decreases over
time. After 22,500 h, the significant decrease in the Significance Le-
vel for both the compressor efficiency and flow capacity drops be-
low pre-defined threshold 0.2 indicating that the failure rate
pattern has changed from a constant failure rate to an increasing
failure rate.

Fig. 13 shows the Skewness from the beginning of operation un-
til 25,000 h of operation. It shows that the absolute value of the
Skewness for compressor flow capacity and compressor isentropic
efficiency degradation increases over time. However, the level of
increase of the Skewness in the compressor efficiency degradation
data is not as significant as that of the compressor flow capacity
degradation data; this may be due to large scattering of the com-
pressor efficiency degradation data shown in Fig. 8. The continuous
increase in the absolute value of the Skewness Level indicates the
status of incompatibility of normal distribution of degradation data
and suggests that the linear regression model does not fit the data
any more after 22,000–25,000 h of operation when the Skewness
increase significantly.

Based on both the Skewness and the Significance Level analysis,
it can be concluded that the failure rate pattern has changed from
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Fig. 13. Skewness levels of compressor efficiency and flow capacity degradation
during engine operation.



Table 4
Predicted remaining engine useful life at 22,500 h of operation.

Remaining engine useful life at 22,500 h of operation

Pessimistic prediction
considering prognostic
uncertainty (tp � 22,500)

Prediction with
quadratic regression
model (tu � 22,500)

From compressor
efficiency drop
data (Fig. 14)

3500 11,000

From compressor
flow capacity drop
data (Fig. 15)

7000 12,500

Based on implanted
degradation

7500
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constant to increasing rate pattern at some point within the range
of 22,500–25,000 h of operation. Therefore, the quadratic regres-
sion model should be used to replace the linear regression model
for further prognostic prediction after around 22,500 h of
operation.

3.5. Applying quadratic regression for prognostic analysis

Based on previous analysis, the engine health prognostic analy-
sis is carried out using the quadratic regression model from
22,500 h of operation onwards. Figs. 14 and 15 show an example
of applying the quadratic regression model to the data of compres-
sor efficiency and flow capacity degradation when it is assumed
that 22,500 h of operation is current time and that the last 30 data
points before the current time are used to produce the regression
lines.

Similar to the practice using linear regression model, the
remaining engine useful life can be estimated accordingly. In
Fig. 14 where future degradation of compressor efficiency is pre-
dicted, tp is around 26,000 h and tu around 33,500 h. The predicted
remaining useful life for the engine based on the compressor effi-
ciency data is roughly between 3500 and 11,000 h. Similarly in
Fig. 15 where future degradation of compressor flow capacity is
predicted, tp is around 29,500 h and tu around 35,000 h. Therefore,
the predicted remaining useful life of the engine based on the flow
capacity data is roughly between 7000 and 12,500 h. A comparison
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Fig. 14. Quadratic regression to scattered data of compressor efficiency at 22,500 h.
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Fig. 15. Quadratic regression to scattered data of compressor flow capacity drop at
22,500 h.
of the predicted remaining useful lives together with the im-
planted remaining useful life is shown in Table 4.

The prediction of remaining engine useful lives from both
Figs. 14 and 15 are found to be satisfactory, as in both cases the im-
planted failure point is well between the predicted failure points
using the quadratic regression model and the lower bound of prog-
nostic uncertainty, Table 4. However, the prediction based on the
compressor flow capacity data provides a narrower uncertainty
interval than that based on the compressor efficiency data because
of different levels of scattering of the data resulted from the diag-
nostic analysis using the GPA analysis. More conserved prediction
of the remaining useful life is from the result based on the com-
pressor efficiency degradation data due to its bigger data
scattering.

The above diagnostic and prognostic analysis should be carried
out continuously during engine operation and the predicted engine
remaining useful life should be updated when new gas path mea-
surements and new predicted engine health data are available.
However, such prognostic information can be used as extra useful
information for gas turbine operators for their maintenance plan-
ning and decision making to define more accurate time for plant
shutdowns, scheduling of maintenance activities, and ordering of
long lead-time spare parts.
4. Conclusions

In this study, a gas turbine prognostic approach based on statis-
tic analysis has been proposed and applied to a model industrial
gas turbine similar to a Rolls-Royce industrial AVON operating at
a constant ambient and operating condition with implanted com-
pressor degradation developed over time following an assumed
failure rate pattern. In this approach, the varying linear and non-
linear degradation patterns that may happen to gas turbine en-
gines are considered in the prognostic analysis. A combined linear
and quadratic regression model is introduced in the prognostic
analysis to fit engine degradation data and provide satisfactory
prediction of engine degradation into the future. For engine degra-
dation following a typical failure rate pattern where a constant fail-
ure rate occurs from the beginning of operation followed by an
increasing failure rate, linear regression model should be applied
first and the quadratic regression model should be applied at the
time when the changing failure rate occurs. A compatibility check
using the Significance Level and the Skewness, a criterion for the
determination of a transition point from linear to quadratic regres-
sion model, is introduced and proved to be useful in engine prog-
nostic analysis. A prognostic uncertainty model based on the
estimation of the variance of historical engine health data is intro-
duced and the prognostic uncertainties are considered in the prog-
nostic analysis in order to determine the prognostic uncertainty
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bounds and then the engine remaining useful life. The application
of the proposed prognostic approach to the model gas turbine en-
gine shows that the combined regression model is able to provide
good fitting to the engine historical health data with varying fault
patterns and provide satisfactory prediction of engine potential
degradation into the future with the consideration of prognostic
uncertainties. The test case shows that the proposed diagnostic
and prognostic approach has a great potential to provide valuable
estimation of engine remaining useful life and assist gas turbine
users in their condition-based maintenance activities.
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