The Preparation and Evaluation of Thermal Spray Coatings: Grinding

Douglas G. Puerta
Director of Metallurgical Engineering
IMR Test Labs, Lansing, New York

Abstract

This article is the third in a series of articles dealing with the metallographic preparation and evaluation of thermal spray coatings. Previously, critical parameters and best practices for the sectioning and mounting of coated components were discussed. In this article, different methods and consumables for material removal by grinding will be discussed.

Abrasive Papers

During the metallographic preparation of thermal spray coatings, a great deal of damage can be induced into the sample. Sectioning of the specimen or coupon can cause localized cracking, delamination, and/or separation of the coating. As a result, the plane of evaluation must be at a point beyond this induced damage. While the depth of damage will vary depending on the operator and equipment used, most specifications call for the removal of at least 0.060” of material prior to polishing. This initial step, designed to quickly remove material, is referred to as planar grinding.

The most common consumable for planar grinding and also for a number of subsequent fine grinding steps is abrasive papers. These papers primarily use silicon carbide (SiC) as the abrasive, although alumina (Al₂O₃) and zirconia (ZrO₂) are used to a lesser extent. SiC papers can be purchased over a range of grit sizes (60-1200 ANSI / P60-P2500 FEPA), while Al₂O₃ and ZrO₂ papers are generally used only for planar grinding and therefore fall within the 60-120 grit range. Traditional metallographic preparation methods use a series of papers ranging from coarse to fine in order to flatten and grind a mounted specimen.

Despite their wide use and popularity, there are a number of drawbacks to SiC papers. A significant drawback is the lack of standardization for SiC papers and for most consumables used in the metallographic laboratory. SiC papers can be manufactured by a number of methods, and as a result can vary significantly in terms of lifespan and material removal rates. Figure 1 shows scanning electron microscope (SEM) images of the surfaces of two sheets of 180-grit SiC paper. While both papers are marketed alike (180-grit, C-weight paper, etc.), a cursory examination reveals differences between the papers in terms of abrasive particle density. By using a higher magnification to continue this comparison (Figure 2), differences in the orientation of the abrasive particles become apparent. In this case, one of the papers is manufactured using an electrostatic process which causes the abrasive particles to stand up when subjected to an electric field. The other paper does not use this manufacturing step.

As reported by Samuels (1), the mechanics of material removal are quite complicated and are based on properties such as material hardness, abrasive spacing (density), and abrasive particle orientation. Effective material removal (referred to as “cutting”) relies on abrasive particle orientation at angles close to normal to the material. As this angle deviates from 90°, less cutting and more plowing takes place. Referring back to Figure 2, the paper produced by electrostatic methods contains the majority of its particles oriented normal to the paper. In comparison, the standard paper has a significant percentage of the particles lying flat, as evidenced by the visible profile of these particles.
In order to quantify the effect of abrasive particle orientation, several trials were performed using carbon steel bar stock to measure material removal rates. Six one-inch tall by one-inch diameter samples were cut from the same bar. These samples were weighed using an analytical balance to create a baseline, and subsequently ground on 180-grit abrasive papers using identical conditions (30N per sample, complimentary rotation, 300 rpm, 60 seconds per paper). Following each trial, the samples were re-weighed to determine weight loss (material removal) for each run. Several trials were performed for each type of abrasive paper (electrostatic and standard). The result of these trials revealed that for the 180-grit SiC paper from two different manufacturers, the electrostatic papers resulted in material removal rates more than twice as high as the standard papers (see Figure 3). Additional trials were performed to measure material removal rates as a function of times. These trials revealed that the lifespan of both electrostatic and standard SiC papers was essentially 30 seconds. After that point, the amount of material removed over the next 30 seconds was a small fraction of the material initially removed.

Planer grinding can also be performed using a diamond grinding disc; however, these discs are designed for repeated use instead of single use and therefore are a different type of consumable.

Stone Grinding

In many cases, the use of abrasive papers is not practical for planar grinding. This is often the case for samples such as turbine blade airfoil sections. When limited to the use of SiC papers, an operator may easily go through 15-20 papers in an effort to remove the required amount of material. As mentioned in the first article of this series, large samples which require the use of abrasive blades for sectioning will contain induced features to a greater depth. Therefore, the removal of a full 0.060” or more is required to ensure an accurate coating structure.

Stone grinding uses 14” or larger aluminum oxide discs which operate at very high speeds (~1,400 rpm). Different grit sizes are available, however, 60-80 grit is common for this grinding step. Stone grinding is generally only performed with special laboratory equipment, as more traditional polishing equipment is typically not designed to meet the size or speed requirements for stone grinding.

While this method of planar grinding is very efficient, the operator needs to be aware that stone grinding can induce damage into a thermal spray coating. As a result, subsequent grinding and polishing operations need to remove any damage induced during planar grinding. Typically, this can be accomplished by using a single sheet of coarse SiC paper. Once again, features such as cracking, delaminations, separations, and even excessive porosity may indicate that the sample contains residual damage from the sectioning or planar grinding operation.

Surface Grinding

Occasionally, some laboratories rely upon nonconventional equipment such as surface grinders to perform planar grinding. Unfortunately, a number of new variables come into play when equipment from outside the metallography lab is utilized. Heat generation during grinding can lead to coating damage, particularly since most industrial grinding machines are not designed to properly cool a mounted specimen. Furthermore, because of the design (and aggressive nature of these machines), a great deal of additional damage may be introduced into the sample.
Conclusions

Planar grinding is an essential step in the metallographic preparation of thermal spray coatings. Regardless of what equipment has been used prior to this point, planar grinding can be used to create a plane of evaluation beyond any induced damage. For large abrasive chop saws, this may require a minimum of 0.060” of material removal. For small precision saws, the amount of material which needs to be removed is much smaller.

While silicon carbide abrasive papers offer a simple method to remove material, the operator needs to be aware that variations in paper quality can lead to inconsistencies in the effectiveness of the paper. Consider a fictitious laboratory which has developed internal procedures that call for the use of 120-grit SiC paper for planar grinding. At the time when these procedures were developed, three sheets of electrostatically deposited paper were specified as being sufficient to remove 0.060” of material. However, because there is no standardization or specifications for SiC paper, switching to a new vendor in the future may mean that 2 to 3 times the number of sheets may now be required to remove the same amount of material. If the laboratory fails to recognize the difference in paper quality and continues with their established procedures, samples may begin to exhibit remnants from the sectioning operation. This is because far less than 0.060” of material is now being removed during the initial planar grinding step.

The bottom line is that laboratories must weigh the cost-benefits of any consumable used in the laboratory. In many cases, seemingly equivalent products may yield significant variations in quality and consistency.
Figure 1: SEM photomicrographs of two sheets of 180-grit SiC abrasive paper, produced by electrostatic (left) and standard (right) methods. In these images, differences in abrasive density are apparent.

Figure 2: Same SiC samples as shown in Figure 1. At higher magnification, differences in abrasive particle orientation due to the manufacturing process can be more readily seen.
Figure 3: Graphical representation of the results of weight change studies for the two types of SiC paper.