Simulation Modeling of Reactive Protocols for Adhoc Wireless Network

Sunil Taneja
Department of Computer Science,
Government Post Graduate College,
Kalka, India
suniltaneja.iiit@gmail.com

Ashwani Kush
Department of Computer Science,
University College, Kurukshetra
University, Kurukshetra, India
akush20@gmail.com

Amandeep Makkar
Department of Computer Science,
Arya Girls College,
Ambala Cantt, India
aman.aryacollege@gmail.com

Abstract

Ad hoc wireless networks are characterized by multihop wireless connectivity, infrastructureless environment and frequently changing topology. As the wireless links are highly error prone and can go down frequently due to mobility of nodes, therefore, stable routing is a very critical task due to highly dynamic environment in adhoc wireless networks. In this research paper, simulation modelling of prominent on-demand routing protocols has been done by presenting their functionality using NS2. An effort has been made to evaluate the performance of DSR and AODV on a self created scene using TCL for varying number of mobile nodes. The performance differential parameters analyzed are; packet delivery ratio and sent & received packets with varying speed and pause time. Subsequently, using results obtained after simulation, the recommendations have been made about the significance of either protocol in various situations. It has been observed that both DSR and AODV are good in performance in their own categories but the emphasis for stable and reliable routing is still on AODV as it performs better in denser environments.

Keywords: Adhoc Wireless Networks, DSR, AODV, Routing, Simulation

I. INTRODUCTION TO ADHOC WIRELESS NETWORKS

The wireless networks are classified as Infrastructure or Infrastructure less. In Infrastructure wireless networks, the mobile node can move while communicating, the base stations are fixed and as the node goes out of the range of a base station, it gets into the range of another base station. In Infrastructureless or Ad Hoc wireless network [15], the mobile node can move while communicating, there are no fixed base stations and all the nodes in the network act as routers. The mobile nodes in the Ad Hoc network dynamically establish routing among themselves to form their own network ‘on the fly’. In this research paper, intend is to study the mobility patterns of DSR and AODV using simulation modeling by varying ‘number of mobile nodes’, ‘speed’, ‘pause time’, ‘UDP connections’ and ‘TCP connections’. A Mobile Ad Hoc Network is a collection of wireless mobile nodes forming a temporary network without any fixed infrastructure where all the nodes are free to move about arbitrarily and where all the nodes configure themselves. Unlike traditional networks whereby routing functions are performed by dedicated nodes or routers, in MANET, routing functions are carried out by all available nodes. There are no fixed base stations and each node acts both as a router and as a host. Even the topology of network may also change rapidly. The mobile nodes in the Ad Hoc network dynamically establish routing among themselves to form their own network ‘on the fly’. In essence, the network is created in ad-hoc fashion by the participating nodes without any central administration. Further ad hoc networks can be classified as single-hop or multi-hop. In single-hop ad hoc networks, nodes are in their reach area and can communicate directly but in case of multi-hop, some nodes are far and cannot communicate directly. The traffic has to be forwarded by other intermediate nodes. Ad hoc networks are primarily meant for use by military forces or for emergency rescue situations. At the state of war an army cannot rely on fixed infrastructure, as it is an easy and attractive target for the enemy. Ad hoc networks are optimal solution in such cases. For civil use ad hoc networks are crucial if the fixed infrastructure has been torn down by some natural disaster, like a flood or an earthquake. Then rescue operations could in such a situation be managed through utilizing ad hoc networks. Mobile ad hoc networks have several advantages over traditional wireless networks including ease of deployment, speed of deployment and decreased dependence on a fixed infrastructure but there are certain open research issues too in its implementation. Some of the research issues [15] are: Dynamic topology, Autonomous or no centralized administration, Device discovery, Bandwidth optimization, Scalability, Limited security, Power Aware Routing, Self healing, Poor transmission quality, Ad hoc addressing, and Topology maintenance.

In Ad hoc network, nodes can change position quite frequently. Each node participating in the network must be willing to transfer packets to other nodes. For this purpose, a routing protocol is needed. Our focus in this research paper is on the stable and reliable routing over mobile adhoc networks. The proposed routing scheme is to select a stable and reliable path in such a manner that load is balanced over the entire network.

II. ROUTING PROTOCOLS

A routing protocol [15] is required whenever a packet needs to be transmitted to a destination via number of nodes and numerous routing protocols have been proposed for such kind of ad hoc networks. These protocols find a route for packet delivery and deliver the packet to the correct destination. The studies on various aspects of routing protocols [1, 2] have been an active area of research for many years. Many protocols have been suggested keeping applications and type of network in view. Basically, routing protocols can be broadly classified into two types as: Table Driven Protocols or Proactive Protocols and On-Demand Protocols or Reactive Protocols. In Table Driven routing protocols each node maintains one or more tables containing routing information to
every other node in the network. All nodes keep on updating these tables to maintain latest view of the network. Some of the existing table driven protocols are DSDV [4], GSR [9], WRP [8] and ZRP [11]. In on-demand routing protocols, routes are created as and when required. When a transmission occurs from source to destination, it invokes the route discovery procedure. The route remains valid till destination is achieved or until the route is no longer needed. Some of the existing on demand routing protocols are: DSR [5], AODV [3] and TORA [10]. The emphasis in this research paper is concentrated on the study of mobility pattern and performance analysis of two prominent on-demand routing Protocols i.e. DSR and AODV. Surveys of routing protocols for ad hoc networks have been discussed in [12, 13, 14]. A brief review of DSR and AODV is presented here as these have been analyzed in this paper for their performance.

(a) **DSR** [5, 7] is an Ad Hoc routing protocol which is source-initiated rather than hop-by-hop and is based on the theory of source-based routing rather than table-based. This is particularly designed for use in multi hop wireless ad hoc networks of mobile nodes. Basically, DSR protocol does not need any existing network infrastructure or administration and this allows the Network to be completely self-organizing and self-configuring. This Protocol is composed of two essential parts of route discovery and route maintenance. Every node maintains a cache to store recently discovered paths. When a node desires to send a packet to some node, it first checks its entry in the cache. If it is there, then it uses that path to transmit the packet and also attach its source address on the packet. If it is not there in the cache or the entry in cache is expired (because of long time idle), the sender broadcasts a route request packet to all of its neighbors asking for a path to the destination. The sender will be waiting till the route is discovered. During waiting time, the sender can perform other tasks such as sending/forwarding other packets. As the route request packet arrives to any of the nodes, they check from their neighbor or from their caches whether the destination asked is known or unknown. If route information is known, they send back a route reply packet to the destination otherwise they broadcast the same route request packet. When the route is discovered, the required packets will be transmitted by the sender on the discovered route. Also an entry in the cache will be inserted for the future use. The node will also maintain the age information of the entry so as to know whether the cache is fresh or not. When a data packet is received by any intermediate node, it first checks whether the packet is meant for itself or not. If it is meant for itself (i.e. the intermediate node is the destination), the packet is received otherwise the same will be forwarded using the path attached on the data packet. Since in Ad hoc network, any link might fail anytime. Therefore, route maintenance process will constantly monitors and will also notify the nodes if there is any failure in the path. Consequently, the nodes will change the entries of their route cache.

(b) **AODV** [3, 7] is a variation of Destination-Sequenced Distance-Vector (DSDV) routing protocol which is collectively based on DSDV and DSR. It aims to minimize the requirement of system-wide broadcasts to its extreme. It does not maintain routes from every node to every other node in the network rather they are discovered as and when needed & are maintained only as long as they are required. The algorithm used by AODV for establishment of unicast routes can be summarized as. When a node wants to send a data packet to a destination node, the entries in route table are checked to ensure whether there is a current route to that destination node or not. If it is there, the data packet is forwarded to the appropriate next hop toward the destination. If it is not there, the route discovery process is initiated. AODV initiates a route discovery process using Route Request (RREQ) and Route Reply (RREP). The source node will create a RREQ packet containing its IP address, its current sequence number, the destination’s IP address, the destination’s last sequence number and broadcast ID. The broadcast ID is incremented each time the source node initiates RREQ. Basically, the sequence numbers are used to determine the timeliness of each data packet and the broadcast ID & the IP address together form a unique identifier for RREQ so as to uniquely identify each request. The requests are sent using RREQ message and the information in connection with creation of a route is sent back in RREP message. The source node broadcasts the RREQ packet to its neighbours and then sets a timer to wait for a reply. To process the RREQ, the node sets up a reverse route entry for the source node in its route table. This helps to know how to forward a RREP to the source. Basically a lifetime is associated with the reverse route entry and if this entry is not used within this lifetime, the route information is deleted. If the RREQ is lost during transmission, the source node is allowed to broadcast again using route discovery mechanism. Maintenance of routes is done using Local route repair scheme.

III. COMPARATIVE STUDY OF DSR AND AODV

DSR and AODV share certain salient characteristics. Specifically, they both discover routes only in the presence of data packets in the need for a route to a destination. Route discovery in either protocol is based on query and reply cycles and route information is stored in all intermediate nodes on the route in the form of route table entries (AODV) or in route caches (DSR). However, there are several important differences [7, 16] in the dynamics of these two protocols, which may give rise to significant performance differentials. The important differences are given below in the form of benefits and limitations of these protocols. These differences help in studying the pattern analysis and performance evaluation of either protocol.

Benefits and Limitations of DSR

DSR protocol has number of benefits. It does not use periodic routing messages (e.g. no router advertisements and
no link-level neighbor status messages), thereby reducing network bandwidth overhead, conserving battery power, and avoiding the propagation of potentially large routing updates throughout the ad hoc network. There is no need to keep routing table so as to route a given data packet as the entire route is contained in the packet header. The routes are maintained only between nodes that need to communicate. This reduces overhead of route maintenance. Route caching can further reduce route discovery overhead. A single route discovery may yield many routes to the destination, due to intermediate nodes replying from local caches. The DSR protocol guarantees loop-free routing and very rapid recovery when routes in the network change. It is able to adapt quickly to changes such as host movement, yet requires no routing protocol overhead during periods in which no such changes occur. In addition, DSR has been designed to compute correct routes in the presence of asymmetric (uni-directional) links. In wireless networks, links may at times operate asymmetrically due to sources of interference, differing radio or antenna capabilities, or the intentional use of asymmetric communication technology such as satellites. Due to the existence of asymmetric links, traditional link-state or distance vector protocols may compute routes that do not work. DSR, however, will find a correct route even in the presence of asymmetric links.

DSR protocol is not totally free from limitations as it is not scalable to large networks. It is mainly efficient for mobile ad hoc networks with less than two hundred nodes. DSR requires significantly more processing resources than most other protocols. In order to obtain the routing information, each node must spend lot of time to process any control data it receives, even if it is not the intended recipient. The contention is increased if too many route replies come back due to nodes replying using their local cache. The Route Reply Storm problem is there. An intermediate node may send Route Reply using a stale cached route, thus polluting other caches. This problem can be eased if some mechanism to purge (potentially) invalid cached routes is incorporated. The Route Maintenance protocol does not locally repair a broken link. The broken link is only communicated to the initiator. Packet header size grows with route length due to source routing. Flood of route requests may potentially reach all nodes in the network. Care must be taken to avoid collisions between route requests propagated by neighboring nodes.

Benefits and Limitations of AODV

AODV protocol has number of benefits. The routes are established on demand and destination sequence numbers are used to find the latest route to the destination. The connection setup delay is lower. It also responds very quickly to the topological changes that affects the active routes. It does not put any additional overheads on data packets as it does not make use of source routing. It favors the least congested route instead of the shortest route and it also supports both unicast and multicast packet transmissions even for nodes in constant movement.

AODV has also certain limitations like DSR. The intermediate nodes can lead to inconsistent routes if the source sequence number is very old and the intermediate nodes have a higher but not the latest destination sequence number, thereby having stale entries. The various performance metrics begin decreasing as the network size grows. It is vulnerable to various kinds of attacks as it based on the assumption that all nodes must cooperate and without their cooperation no route can be established. The multiple Route Reply packets in response to a single Route Request packet can lead to heavy control overhead. The periodic beaconing leads to unnecessary bandwidth consumption. It expects/requires that the nodes in the broadcast medium can detect each others’ broadcasts. It is also possible that a valid route is expired and the determination of a reasonable expiry time is difficult. The reason behind this is that the nodes are mobile and their sending rates may differ widely and can change dynamically from node to node.

IV. PERFORMANCE METRICS

There are number of qualitative and quantitative performance metrics that can be used to study the mobility pattern of reactive routing protocols viz. packet delivery ratio, average end to end delay, protocol control overhead etc.

Packet Delivery Ratio: This is the ratio of number of packets received at the destination to the number of packets sent from the source. In other words, fraction of successfully received packets, which survive while finding their destination, is called as packet delivery ratio.

Sent and Received Packets: This refers to the number of packets sent over the network by the source node and the number of packets actually received by the destination node.

Average end-to-end delay: This is the average time delay for data packets from the source node to the destination node.

Most of the existing routing protocols ensure the qualitative metrics. Therefore, we have used the packet delivery ratio as quantitative metrics for pattern analysis and performance evaluation of aforementioned routing protocols using simulation modeling for 20 and 50 mobile nodes. The results have also been analyzed for DSR and AODV using sent and received packets with respect to varying speed and pause time.

V. SIMULATION MODEL OF DSR AND AODV

A random waypoint model [17] has been used and some dense/sparse medium scenarios have been generated using TCL. An extensive simulation model having scenario of 20 and 50 mobile nodes is used to study inter-layer interactions and their performance implications. The Simulator used is NS 2.34 [18]. Packet size is 512 bytes. Same scenario has been used for both protocols to match the results. The performance differentials are analyzed using packet delivery ratio with respect to varying speed and pause time and then sent and received packets with respect to speed and pause time.

Packet Delivery Ratio with respect to Speed and Pause Time for simulation of 20 mobile nodes

Area considered is 750 meter × 750 meter and simulation run time is 500 seconds during pattern analysis of 20 nodes using UDP and TCP connections both with respect to varying speed and pause time. Graph 1 shows the packet delivery ratio using speed as a parameter. This performance metric has been evaluated for DSR and AODV using 20 nodes and 6 UDP connections. Speed has been varied from 1m/s to 10 m/s. The
PDR values, computed using received and dropped packets, range from 96% to 99%. The results show that only at one point of time, DSR and AODV give same PDR value (approx.), otherwise, DSR protocol outperforms AODV in “low mobility” situation.

In graph 2, the packet delivery ratio has been evaluated for DSR and AODV protocols using pause time as parameter with same number of nodes and UDP connections. Pause time has been varied from 100s to 500s. The PDR values, computed using received and dropped packets, range from 95% to 99%. In this scenario, the observation is that the DSR protocol outperforms AODV in all the situations.

Graph 3 depicts the packet delivery ratio using speed as a parameter for DSR and AODV protocols. The results are on the basis of 20 mobile nodes and 6 TCP connections. Speed variation is from 1m/s to 10 m/s. The PDR values, computed using received and dropped packets, range from 97% to 99%. The results show that in “low mobility” situation, AODV protocol gives same PDR value (approx.) as that of DSR protocol in the beginning, intermediate and end stage only otherwise, DSR protocol outperforms AODV. On the other hand, AODV outperforms DSR protocol in “high mobility” situation.

In graph 4, the packet delivery ratio has been evaluated using pause time as a parameter on 20 mobile nodes having 6 TCP connections. Pause time varies 100s to 500s. The PDR values, computed using received and dropped packets, range from 97% to 99%. The observation is that the DSR protocol outperforms AODV when pause time is less but AODV outperforms DSR when pause time is high.

Packet Delivery Ratio with respect to Speed and Pause Time for simulation of 50 mobile nodes

Area considered is 1Km × 1 Km and simulation run time is 700 seconds during pattern analysis of 50 nodes using UDP and TCP connections both with respect to varying speed and pause time. Graph 5 shows the packet delivery ratio using speed as a parameter. This performance metric has been evaluated for DSR and AODV using 50 nodes and 10 UDP connections. Speed has been varied from 1m/s to 10 m/s. The PDR values, computed using received and dropped packets, range from 89% to 95%. The results show that the DSR protocol outperforms AODV.

In graph 6, the packet delivery ratio has been evaluated for DSR and AODV protocols using pause time as parameter with same number of nodes and UDP connections. Pause time has been varied from 100s to 650s. The PDR values, computed using received and dropped packets, range from 88% to 95%. In this scenario, the observation is same as above i.e. the DSR protocol outperforms AODV.

In graph 7, the packet delivery ratio has been evaluated for DSR and AODV protocols using speed as a parameter for 50 mobile nodes and 10 TCP connections. Speed variation is from 1m/s to 10 m/s. The PDR values, computed using received and dropped packets, range from 91% to 97%. The results show that in “low mobility” situation, DSR protocol gives approximately same PDR value as that of DSR protocol but in “high mobility” situation, AODV outperforms DSR protocol.

In graph 8, the packet delivery ratio has been evaluated using pause time as a parameter on 50 mobile nodes having 10 TCP connections. Pause time varies 100s to 650s. The PDR values, computed using received and dropped packets, range from 92% to 97%. The observation is that the AODV protocol
outperforms DSR when pause time is less and AODV protocol gives approximately same PDR value as that of DSR protocol when pause time is high.

Sent and Received Packets with respect to Speed and Pause Time for simulation of 20 mobile nodes

Graph 9 to 12 illustrate the summary of packets sent and received for DSR and AODV protocols with respect to speed and pause time for 20 mobile nodes having 6 UDP and TCP connections.
Sent and Received Packets with respect to Speed and Pause Time for simulation of 50 mobile nodes

Graph 13 to 16 illustrate the summary of packets sent and received for DSR and AODV protocols with respect to speed and pause time for 50 mobile nodes having 10 UDP and TCP connections.

In this paper, an effort has been made to concentrate on the comparative study and performance analysis of two prominent on demand routing protocols i.e. DSR and AODV on the basis of packet delivery ratio. The earlier work available in the literature has been studied carefully. An effort has been made to perform analysis on a new random way point self created network scenario. The analysis has been reflected in graphs. It has been analyzed that both protocols are good in performance in their own spheres. Still the emphasis of better routing can be on AODV as it performs better in denser mediums. DSR is steady in sparse mediums but it just losses some ground in denser environment and that too when more connections are available and packet are in TCP mode. It is worth mentioning that in the future MANETS, denser mediums will be used with increasing applications, so it can be generalized that AODV is better choice for routing in terms of better packet delivery. Some of the aspects in this study are still under observation as the performance is still to be compared with TORA, STAR and ZRP. More metrics like end to end delay and throughput, load and node life time is still to be taken into account. Power efficiency and secure routing are other major concerns for the future study. An effort will also be made to prove which protocol is best as overall performer.

REFERENCES

[18] NS Notes and Documentation available at www.isi.edu/vint