Contents

PURPOSE ... 1
PREREQUISITES .. 1
OVERVIEW ... 1
INPUTS AND OUTPUTS ... 2
EXAMPLE: WORDCOUNT V1.0 ... 2
 SOURCE CODE ... 2
 USAGE ... 4
 WALK-THROUGH .. 5
MAPREDUCE – USER INTERFACES .. 6
 PAYLOAD .. 7
 Mapper ... 7
 Reducer ... 8
 Partitioner ... 9
 Reporter .. 9
 OutputCollector ... 9
 JOB CONFIGURATION .. 10
 TASK EXECUTION AND ENVIRONMENT .. 10
 Memory Management .. 11
 Map Parameters ... 12
 Shuffle/Reduce Parameters .. 14
 Task JVM Reuse ... 16
 JOB SUBMISSION AND MONITORING .. 17
 Job Control .. 18
 JOB INPUT .. 18
 InputSplit ... 19
 RecordReader ... 19
 JOB OUTPUT ... 19
 OutputCommitter .. 20
 Task Side-Effect Files ... 20
 RecordWriter ... 21
OTHER USEFUL FEATURES .. 21
Submitting Jobs to Queues .. 21
Counters .. 21
DistributedCache ... 22
Tool ... 22
IsolationRunner .. 23
Profiling ... 23
Debugging ... 24
JobControl .. 24
Data Compression ... 24
Skipping Bad Records ... 25

EXAMPLE: WORDCOUNT V2.0 ... 26

SOURCE CODE ... 26
SAMPLE RUNS ... 29
HIGHLIGHTS .. 31
Purpose

This document describes the most important user-facing facets of the Apache Hadoop MapReduce framework and serves as a tutorial. Apache Hadoop MapReduce consists of client APIs for writing applications and a runtime on which to run the applications. There are two versions of the API: old and new, and two versions of the runtime: MRv1 and MRv2. This tutorial describes the old API and MRv1.

Prerequisites

Ensure that CDH is installed, configured, and running. The easiest way to get going quickly is to use a demo VM:

- CDH4 Demo VM
- CDH3 Demo VM

Overview

Hadoop MapReduce is a software framework for writing applications that process vast amounts of data (multi-petabyte datasets) in parallel on large clusters consisting of thousands of nodes of commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input dataset into independent chunks which are processed by the map tasks in a parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically both the input and the output of the job are stored in a distributed filesystem.

Typically the compute nodes and the storage nodes are the same, that is, the MapReduce framework and the Hadoop Distributed File System (HDFS) are running on the same set of nodes. This configuration allows the framework to effectively schedule tasks on the nodes where data is already present, resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework consists of a single master JobTracker and one slave TaskTracker per cluster node. The master is responsible for scheduling the jobs' component tasks on the slaves, monitoring the tasks, and re-executing failed tasks. The slaves execute the tasks as directed by the master.

Minimally, applications specify the input/output locations and supply map and reduce functions via implementations of appropriate interfaces and/or abstract classes. These locations and functions and other job parameters comprise the job configuration. The Hadoop job client then submits the job (JAR/executable, and so on) and configuration to the JobTracker which then distributes the software/configuration to the slaves, scheduling tasks and monitoring them, and providing status and diagnostic information to the job client.

The Hadoop framework is implemented in Java™, and you can develop MapReduce applications in Java or any JVM-based language or use one of the following interfaces:
Inputs and Outputs

- **Hadoop Streaming** - a utility that allows you to create and run jobs with any executables (for example, shell utilities) as the mapper and/or the reducer.
- **Hadoop Pipes** - a SWIG-compatible (not based on JNI™) C++ API to implement MapReduce applications.

This tutorial describes applications written using the old Java MapReduce API.

The old API is in the `org.apache.hadoop.mapred` package. The new API is in the `org.apache.hadoop.mapreduce` package.

Inputs and Outputs

The MapReduce framework operates exclusively on key-value pairs, that is, the framework views the input to the job as a set of key-value pairs and produces a set of key-value pairs as the output of the job. The output pairs can be different types than the input pairs.

The key and value classes must be serializable by the framework and hence must implement the `Writable` interface. Additionally, the key classes must implement the `WritableComparable` interface to facilitate sorting.

Input and Output types of a MapReduce job:

(input) k1-v1 -> map -> k2-v2 -> combine -> k2-v2 -> reduce -> k3-v3 (output)

Example: WordCount v1.0

Before we jump into the details, let's walk through an example MapReduce application, WordCount, to get a flavor for how MapReduce works. WordCount is a simple application that counts the number of occurrences of each word in an input set.

Source Code

```java
package org.myorg;

import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
```
public class WordCount {

 public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 output.collect(word, one);
 }
 }
 }

 public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
 }

 public static void main(String[] args) throws Exception {
 JobConf conf = new JobConf(WordCount.class);
 conf.setJobName("wordcount");

 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);

 conf.setMapperClass(Map.class);
 conf.setCombinerClass(Reduce.class);
 conf.setReducerClass(Reduce.class);

 conf.setInputFormat(TextInputFormat.class);
 conf.setOutputFormat(TextOutputFormat.class);

 FileInputFormat.setInputPaths(conf, new Path(args[0]));
 FileOutputFormat.setOutputPath(conf, new Path(args[1]));
 }
}
Example: WordCount v1.0

```java
JobClient.runJob(conf);
}
}
```

Table 1 WordCount.java

Usage

Compile WordCount.java:

```
$ mkdir wordcount_classes
$ javac -cp classpath -d wordcount_classes WordCount.java
```

where classpath is:

- CDH4 - /usr/lib/hadoop/*:/usr/lib/hadoop/client-0.20/*
- CDH3 - /usr/lib/hadoop-0.20/hadoop-0.20.2-cdh3u4-core.jar

Create a JAR:

```
$ jar -cvf wordcount.jar -C wordcount_classes/ .
```

Assuming that:

- /user/cloudera/wordcount/input - input directory in HDFS
- /user/cloudera/wordcount/output - output directory in HDFS

Create sample text files as input and move to HDFS:

```
$ echo "Hello World Bye World" > file0
$ echo "Hello Hadoop Goodbye Hadoop" > file1
$ hadoop fs -mkdir /user/cloudera /user/cloudera/wordcount
/user/cloudera/wordcount/input
$ hadoop fs -put file* /user/cloudera/wordcount/input
```

Run the application:

```
$ hadoop jar wordcount.jar org.myorg.WordCount
/user/cloudera/wordcount/input /user/cloudera/wordcount/output
```
Output:

```
$ hadoop fs -cat /user/cloudera/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
```

Applications can specify a comma-separated list of paths that would be present in the current working directory of the task using the option `-files`. The `-libjars` option allows applications to add JARs to the classpaths of the maps and reduces. The `-archives` allows them to pass archives as arguments that are unzipped/unjarred and a link with name of the zip/JAR are created in the current working directory of tasks. More details about the command line options are available at Hadoop Command Guide.

Running wordcount example with `-libjars` and `-files`:

```
hadoop jar hadoop-examples.jar wordcount -files cachefile.txt -libjars mylib.jar input output
```

Walk-through

The WordCount application is quite straightforward.

The Mapper implementation (lines 14-26), via the map method (lines 18-25), processes one line at a time, as provided by the specified TextInputFormat (line 49). It then splits the line into tokens separated by whitespaces, via the StringTokenizer, and emits a key-value pair of `<word, 1>`.

For the given sample input the first map emits:

```
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>
```

The second map emits:

```
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>
```

We’ll learn more about the number of maps spawned for a given job, and how to control them in a fine-grained manner, a bit later in the tutorial.
WordCount also specifies a combiner (line 46). Hence, the output of each map is passed through the local combiner (which is same as the Reducer as per the job configuration) for local aggregation, after being sorted on the keys.

The output of the first map:
< Bye, 1>
< Hello, 1>
< World, 2>

The output of the second map:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

The Reducer implementation (lines 28-36), via the reduce method (lines 29-35) just sums up the values, which are the occurrence counts for each key (that is, words in this example).

Thus the output of the job is:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>

The run method specifies various facets of the job, such as the input/output paths (passed via the command line), key-value types, input/output formats etc., in the JobConf. It then calls the JobClient.runJob (line 55) to submit the and monitor its progress.

We’ll learn more about JobConf, JobClient, Tool, and other interfaces and classes a bit later in the tutorial.

MapReduce – User Interfaces

This section provides a reasonable amount of detail on every user-facing aspect of the MapReduce framework. This should help you implement, configure and tune your jobs in a fine-grained manner. However, note that the javadoc for each class/interface remains the most comprehensive documentation available; this is only meant to be a tutorial.

Let’s first take the Mapper and Reducer interfaces. Applications typically implement them to provide the map and reduce methods.

We will then discuss other core interfaces including JobConf, JobClient, Partitioner, OutputCollector, Reporter, InputFormat, OutputFormat, OutputCommitter, and others.

Finally, we will wrap up by discussing some useful features of the framework such as the DistributedCache, IsolationRunner, and so on.
Payload

Applications typically implement the **Mapper** and **Reducer** interfaces to provide the **map** and **reduce** methods. These form the core of the job.

Mapper

Mapper maps input key-value pairs to a set of intermediate key-value pairs. Maps are the individual tasks that transform input records into intermediate records. The transformed intermediate records do not need to be of the same type as the input records. A given input pair may map to zero or many output pairs.

The Hadoop MapReduce framework spawns one map task for each **InputSplit** generated by the **InputFormat** for the job.

Overall, **Mapper** implementations are passed the **JobConf** for the job via the **JobConfigurable.configure(JobConf)** method and override it to initialize themselves. The framework then calls **map(WritableComparable, Writable, OutputCollector, Reporter)** for each key-value pair in the **InputSplit** for that task. Applications can then override the **Closeable.close()** method to perform any required cleanup.

Output pairs do not need to be of the same types as input pairs. A given input pair may map to zero or many output pairs. Output pairs are collected with calls to **OutputCollector.collect(WritableComparable,Writable)**.

Applications can use **Reporter** to report progress, set application-level status messages and update **Counters**, or just indicate that they are alive.

All intermediate values associated with a given output key are subsequently grouped by the framework, and passed to the **Reducer(s)** to determine the final output. You can control the grouping by specifying a **Comparator** via **JobConf.setOutputKeyComparatorClass(Class)**.

The **Mapper** outputs are sorted and then partitioned per **Reducer**. The total number of partitions is the same as the number of reduce tasks for the job. You can control which keys (and hence records) go to which **Reducer** by implementing a custom **Partitioner**.

You can optionally specify a combiner, via **JobConf.setCombinerClass(Class)**, to perform local aggregation of the intermediate outputs, which helps to cut down the amount of data transferred from the **Mapper** to the **Reducer**.

The intermediate, sorted outputs are always stored in a simple (key-len, key, value-len, value) format. Applications can control if, and how, the intermediate outputs are to be compressed and the **CompressionCodec** to be used via the **JobConf**.

How Many Maps?

The number of maps is usually driven by the total size of the inputs, that is, the total number of blocks of the input files.
The right level of parallelism for maps seems to be around 10-100 maps per node, although it has been set up to 300 maps for very cpu-light map tasks. Task setup takes awhile, so it is best if the maps take at least a minute to execute.

Thus, if you expect 10TB of input data and have a blocksize of 128MB, you’ll end up with 82,000 maps, unless setNumMapTasks(int) (which only provides a hint to the framework) is used to set it even higher.

Reducer

Reducer reduces a set of intermediate values that share a key to a smaller set of values.

You set the number of reducers for the job via JobConf.setNumReduceTasks(int).

Overall, Reducer implementations are passed the JobConf for the job via the JobConfigurable.configure(JobConf) method and can override it to initialize themselves. The framework then calls reduce(WritableComparable, Iterator, OutputCollector, Reporter) method for each pair in the grouped inputs. Applications can then override the Closeable.close() method to perform any required cleanup.

Reducer has 3 primary phases: shuffle, sort, and reduce.

Shuffle

Input to the Reducer is the sorted output of the mappers. In this phase the framework fetches the relevant partition of the output of all the mappers, via HTTP.

Sort

The framework groups Reducer inputs by keys (since different mappers may have output the same key) in this stage.

The shuffle and sort phases occur simultaneously; while map outputs are being fetched they are merged.

Secondary Sort

If equivalence rules for grouping the intermediate keys are required to be different from those for grouping keys before reduction, then one may specify a Comparator via JobConf.setOutputValueGroupingComparator(Class). Since JobConf.setOutputKeyComparatorClass(Class) can be used to control how intermediate keys are grouped, these can be used in conjunction to simulate secondary sort on values.

Reduce

In this phase the reduce(WritableComparable, Iterator, OutputCollector, Reporter) method is called for each pair in the grouped inputs.

The output of the reduce task is typically written to the FileSystem via OutputCollector.collect(WritableComparable, Writable).

Applications can use the Reporter to report progress, set application-level status messages and update Counters, or just indicate that they are alive.
The output of the Reducer is not sorted.

How Many Reduces?

The right number of reduces seems to be 0.95 or 1.75 multiplied by (no. of nodes * mapred.tasktracker.reduce.tasks.maximum).

With 0.95 all of the reduces can launch immediately and start transferring map outputs as the maps finish. With 1.75 the faster nodes will finish their first round of reduces and launch a second wave of reduces doing a much better job of load balancing.

Increasing the number of reduces increases the framework overhead, but increases load balancing and lowers the cost of failures.

The scaling factors above are slightly less than whole numbers to reserve a few reduce slots in the framework for speculative tasks and failed tasks.

Reducer NONE

It is legal to set the number of reduce tasks to zero if no reduction is desired.

In this case the outputs of the map tasks go directly to the filesystem, into the output path set by `setOutputPath(Path)`. The framework does not sort the map outputs before writing them out to the filesystem.

Partitioner

`Partitioner` partitions the key space. `Partitioner` controls the partitioning of the keys of the intermediate map outputs. The key (or a subset of the key) is used to derive the partition, typically by a hash function. The total number of partitions is the same as the number of reduce tasks for the job. Hence this controls which of the m reduce tasks the intermediate key (and hence the record) is sent to for reduction.

`HashPartitioner` is the default `Partitioner`.

Reporter

`Reporter` is a facility for MapReduce applications to report progress, set application-level status messages and update `Counters`.

Mapper and Reducer implementations can use the `Reporter` to report progress or just indicate that they are alive. In scenarios where the application takes a significant amount of time to process individual key-value pairs, this is crucial since the framework might assume that the task has timed out and kill that task. Another way to avoid this is to set the configuration parameter `mapred.task.timeout` to a high enough value (or even set it to zero for no timeouts).

Applications can also update `Counters` using `Reporter`.

OutputCollector

`OutputCollector` is a generalization of the facility provided by the MapReduce framework to collect data output by the Mapper or the Reducer (either the intermediate outputs or the output of the job).
MapReduce – User Interfaces

Hadoop MapReduce comes bundled with a library of generally useful mappers, reducers, and partitioners.

Job Configuration

JobConf represents a MapReduce job configuration. JobConf is the primary interface to describe a MapReduce job to the Hadoop framework for execution. The framework tries to faithfully execute the job as described by JobConf, however:

- Some configuration parameters may have been marked as final by administrators and hence cannot be altered.
- While some job parameters are straightforward to set (for example, setNumReduceTasks(int)), other parameters interact subtly with the rest of the framework and/or job configuration and are more complex to set (for example, setNumMapTasks(int)).

JobConf is typically used to specify the Mapper, Combiner (if any), Partitioner, Reducer, InputFormat, OutputFormat and OutputCommitter implementations. JobConf also indicates the set of input files (setInputPaths(JobConf, Path...) / addInputPath(JobConf, Path)) and (setInputPaths(JobConf, String) / addInputPaths(JobConf, String)) and where the output files should be written (setOutputPath(Path)).

Optionally, JobConf is used to specify other advanced facets of the job such as the Comparator to be used, files to be put in the DistributedCache, whether intermediate and/or job outputs are to be compressed (and how), debugging via user provided scripts (setMapDebugScript(String)/setReduceDebugScript(String)), whether job tasks can be executed in a speculative manner (setMapSpeculativeExecution(boolean) / setReduceSpeculativeExecution(boolean)), maximum number of attempts per task (setMaxMapAttempts(int)/setMaxReduceAttempts(int)), percentage of tasks failure which can be tolerated by the job (setMaxMapTaskFailuresPercent(int)/setMaxReduceTaskFailuresPercent(int)) etc.

Of course, you can use set(String, String)/get(String, String) to get and set arbitrary parameters needed by applications. However, use DistributedCache for large amounts of (read-only) data.

Task Execution and Environment

TaskTracker executes Mapper and Reducer tasks as child processes in separate JVMs.

The child task inherits the environment of the parent TaskTracker. You can specify additional options to the child JVM via the mapred.child.java.opts configuration parameter in the JobConf such as non-standard paths for the runtime linker to search shared libraries via -Djava.library.path=<>, and so on. If the mapred.child.java.opts property contains the symbol (taskid) it is interpolated with value of taskid of the MapReduce task.

Here is an example property with multiple arguments and substitutions, showing JVM GC logging, and start of a passwordless JVM JMX agent so that it can connect with jconsole and the like to watch child
memory, threads, and get thread dumps. The property also sets the maximum heap size of the child JVM to 512MB and adds an additional path to the `java.library.path` of the child JVM.

```
<property>
  <name>mapred.child.java.opts</name>
  <value>
    -Xmx512M -Djava.library.path=/home/mycompany/lib -verbose:gc -
    Xloggc:/tmp/@taskid@.gc
    -Dcom.sun.management.jmxremote.authenticate=false -
    Dcom.sun.management.jmxremote.ssl=false
  </value>
</property>
```

Memory Management

You can also specify the maximum virtual memory of the launched child task, and any subprocess it launches recursively, using `mapred.child.ulimit`. Note that the value set here is a per process limit. The value for `mapred.child.ulimit` should be specified in kilobytes (KB) and must be greater than or equal to the `-Xmx` value passed to the Java VM.

`mapred.child.java.opts` is used only for configuring the launched child tasks from task tracker. Configuring the memory options for daemons is documented in [Configuring the Environment of the Hadoop Daemons](#).

The memory available to some parts of the framework is also configurable. In map and reduce tasks, performance may be influenced by adjusting parameters influencing the concurrency of operations and the frequency with which data will hit disk. Monitoring the filesystem counters for a job – particularly relative to byte counts from the map and into the reduce – is invaluable to the tuning of these parameters.

You can choose to override default limits of virtual memory and RAM enforced by the task tracker, if memory management is enabled. You can set the following parameters per job:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapred.task.maxvmem</td>
<td>int</td>
<td>A number, in bytes, that represents the maximum virtual memory task limit for each task of the job. A task will be killed if it consumes more virtual memory</td>
</tr>
</tbody>
</table>
Name | Type | Description
--- | --- | ---
mapred.task.maxpmem | int | A number, in bytes, that represents the maximum RAM task limit for each task of the job. This number can be optionally used by schedulers to prevent overscheduling of tasks on a node based on RAM needs.

Map Parameters
A record emitted from a map will be serialized into a buffer and metadata will be stored into accounting buffers. As described in the following options, when either the serialization buffer or the metadata exceed a threshold, the contents of the buffers will be sorted and written to disk in the background while the map continues to output records. If either buffer fills completely while the spill is in progress, the map thread will block. When the map is finished, any remaining records are written to disk and all on-disk segments are merged into a single file. Minimizing the number of spills to disk can decrease map time, but a larger buffer also decreases the memory available to the mapper.

### Name	Type	Description
io.sort.mb | int | The cumulative size of the serialization and accounting buffers storing records emitted from the map, in megabytes.
io.sort.record.percent | float | The ratio of serialization to accounting space can be adjusted. Each serialized record requires 16 bytes of accounting information in addition to its serialized size to effect the sort. This percentage of space allocated from io.sort.mb affects the probability of a spill to disk being caused by either exhaustion of the serialization buffer or the
### Name	Type	Description
\[\text{io.sort.spill.percent}\] | float | accounting space. Clearly, for a map outputting small records, a higher value than the default will likely decrease the number of spills to disk.

io.sort.spill.percent

This is the threshold for the accounting and serialization buffers. When this percentage of either buffer has filled, their contents will be spilled to disk in the background. Let \[\text{io.sort.record.percent be } r, \text{io.sort.mb be } x, \text{and this value be } q.\] The maximum number of records collected before the collection thread will spill is \(r \times x \times q \times 2^{16}\). Note that a higher value may decrease the number of – or even eliminate – merges, but will also increase the probability of the map task getting blocked. The lowest average map times are usually obtained by accurately estimating the size of the map output and preventing multiple spills.

Other notes

- If either spill threshold is exceeded while a spill is in progress, collection will continue until the spill is finished. For example, if \[\text{io.sort.buffer.spill.percent}\] is set to 0.33, and the remainder of the buffer is filled while the spill runs, the next spill will include all the collected records, or 0.66 of the buffer, and will not generate additional spills. In other words, the thresholds are defining triggers, not blocking.

- A record larger than the serialization buffer will first trigger a spill, then be spilled to a separate file. It is undefined whether or not this record will first pass through the combiner.
Shuffle/Reduce Parameters

As described previously, each reduce fetches the output assigned to it by the Partitioner via HTTP into memory and periodically merges these outputs to disk. If intermediate compression of map outputs is turned on, each output is decompressed into memory. The following options affect the frequency of these merges to disk prior to the reduce and the memory allocated to map output during the reduce.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>io.sort.factor</td>
<td>int</td>
<td>Specifies the number of segments on disk to be merged at the same time. It limits the number of open files and compression codecs during the merge. If the number of files exceeds this limit, the merge will proceed in several passes. Though this limit also applies to the map, most jobs should be configured so that hitting this limit is unlikely there.</td>
</tr>
<tr>
<td>mapred.inmem.mergethreshold</td>
<td>int</td>
<td>The number of sorted map outputs fetched into memory before being merged to disk. Like the spill thresholds in the preceding note, this is not defining a unit of partition, but a trigger. In practice, this is usually set very high (1000) or disabled (0), since merging in-memory segments is often less expensive than merging from disk (see notes following this table). This threshold influences only the frequency of in-memory merges during the shuffle.</td>
</tr>
<tr>
<td>mapred.job.shuffle.merge.percent</td>
<td>float</td>
<td>The memory threshold for fetched map outputs before an in-memory merge is started, expressed as a percentage of memory allocated to storing map outputs.</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>outputs in memory. Since map outputs that can't fit in memory can be stalled, setting this high may decrease parallelism between the fetch and merge. Conversely, values as high as 1.0 have been effective for reduces whose input can fit entirely in memory. This parameter influences only the frequency of in-memory merges during the shuffle.</td>
</tr>
<tr>
<td>mapred.job.shuffle.input.buffer.percent</td>
<td>float</td>
<td>The percentage of memory – relative to the maximum heapsize as typically specified in mapred.child.java.opts – that can be allocated to storing map outputs during the shuffle. Though some memory should be set aside for the framework, in general it is advantageous to set this high enough to store large and numerous map outputs.</td>
</tr>
<tr>
<td>mapred.job.reduce.input.buffer.percent</td>
<td>float</td>
<td>The percentage of memory relative to the maximum heapsize in which map outputs may be retained during the reduce. When the reduce begins, map outputs will be merged to disk until those that remain are under the resource limit this defines. By default, all map outputs are merged to disk before the reduce begins to maximize the memory available to the reduce. For less memory-intensive reduces, this should be increased to avoid trips</td>
</tr>
</tbody>
</table>
Other notes

- If a map output is larger than 25 percent of the memory allocated to copying map outputs, it will be written directly to disk without first staging through memory.

- When running with a combiner, the reasoning about high merge thresholds and large buffers may not hold. For merges started before all map outputs have been fetched, the combiner is run while spilling to disk. In some cases, one can obtain better reduce times by spending resources combining map outputs – making disk spills small and parallelizing spilling and fetching – rather than aggressively increasing buffer sizes.

- When merging in-memory map outputs to disk to begin the reduce, if an intermediate merge is necessary because there are segments to spill and at least \texttt{io.sort.factor} segments already on disk, the in-memory map outputs will be part of the intermediate merge.

Task JVM Reuse

Jobs can enable task JVMs to be reused by specifying the job configuration \texttt{mapred.job.reuse.jvm.num.tasks}. If the value is 1 (the default), then JVMs are not reused (that is, 1 task per JVM). If it is -1, there is no limit to the number of tasks a JVM can run (of the same job). You can also specify some value greater than 1 using the method \texttt{JobConf.setNumTasksToExecutePerJvm(int)}.

The following properties are localized in the job configuration for each task’s execution:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapred.job.id</td>
<td>String</td>
<td>The job id</td>
</tr>
<tr>
<td>mapred.jar</td>
<td>String</td>
<td>job.jar location in job directory</td>
</tr>
<tr>
<td>job.local.dir</td>
<td>String</td>
<td>The job specific shared scratch space</td>
</tr>
<tr>
<td>mapred.tip.id</td>
<td>String</td>
<td>The task id</td>
</tr>
<tr>
<td>mapred.task.id</td>
<td>String</td>
<td>The task attempt id</td>
</tr>
</tbody>
</table>
MapReduce – User Interfaces

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapred.task.is.map</td>
<td>boolean</td>
<td>Is this a map task</td>
</tr>
<tr>
<td>mapred.task.partition</td>
<td>int</td>
<td>The id of the task within the job</td>
</tr>
<tr>
<td>map.input.file</td>
<td>String</td>
<td>The filename that the map is reading from</td>
</tr>
<tr>
<td>map.input.start</td>
<td>long</td>
<td>The offset of the start of the map input split</td>
</tr>
<tr>
<td>map.input.length</td>
<td>long</td>
<td>The number of bytes in the map input split</td>
</tr>
<tr>
<td>mapred.work.output.dir</td>
<td>String</td>
<td>The task’s temporary output directory</td>
</tr>
</tbody>
</table>

The standard output (stdout) and error (stderr) streams of the task are read by the TaskTracker and logged to ${HADOOP_LOG_DIR}/userlogs

DistributedCache can also be used to distribute both JARs and native libraries for use in the map and/or reduce tasks. The child JVM always has its *current working directory* added to the *java.library.path* and *LD_LIBRARY_PATH*. Hence the cached libraries can be loaded via *System.loadLibrary* or *System.load*. More details on how to load shared libraries through distributed cache are documented at [Loading native libraries through DistributedCache](#).

Job Submission and Monitoring

JobClient is the primary interface by which a user job interacts with the JobTracker. *JobClient* provides facilities to submit jobs, track their progress, access component tasks’ reports and logs, get the MapReduce cluster’s status information, and so on.

The job submission process involves:

1. Checking the input and output specifications of the job.
2. Computing the *InputSplit* values for the job.
3. Setting up the requisite accounting information for the *DistributedCache* of the job, if necessary.
4. Copying the job’s JAR file and configuration to the MapReduce system directory on the filesystem.
5. Submitting the job to the JobTracker and optionally monitoring it’s status.

Job history files are also logged to user-specified directory `hadoop.job.history.user.location` which defaults to job output directory. The files are stored in “_logs/history/” in the specified directory. Hence, by default they will be in `mapred.output.dir/_logs/history`. You can stop logging by giving the value `none` for `hadoop.job.history.user.location`.

You can view the history logs summary in specified directory using the following command:

```
$ hadoop job -history output-dir
```

This command will print job details, failed and killed tip details.

More details about the job such as successful tasks and task attempts made for each task can be viewed using the following command

```
$ hadoop job -history all output-dir
```

You can use `OutputLogFilter` to filter log files from the output directory listing.

Normally you create the application, describes various facets of the job via `JobConf`, and then use the `JobClient` to submit the job and monitor its progress.

Job Control

You may need to chain MapReduce jobs to accomplish complex tasks which cannot be done via a single MapReduce job. This is fairly easy since the output of the job typically goes to distributed filesystem, and the output, in turn, can be used as the input for the next job.

However, this also means that the onus on ensuring jobs are complete (success/failure) lies squarely on the clients. In such cases, the various job control options are:

- `runJob(JobConf)`: Submits the job and returns only after the job has completed.
- `submitJob(JobConf)`: Only submits the job, then poll the returned handle to the `RunningJob` to query status and make scheduling decisions.
- `JobConf.setJobEndNotificationURI(String)`: Sets up a notification upon job-completion, thus avoiding polling.

You can can also use `Oozie` to implement chains of MapReduce jobs.

Job Input

`InputFormat` describes the input specification for a MapReduce job. The MapReduce framework relies on the `InputFormat` of the job to:
1. Validate the input specification of the job.

2. Split up the input file(s) into logical \texttt{InputSplit} instances, each of which is then assigned to an individual Mapper.

3. Provide the \texttt{RecordReader} implementation used to glean input records from the logical \texttt{InputSplit} for processing by the Mapper.

The default behavior of file-based \texttt{InputFormat} implementations, typically sub-classes of \texttt{FileInputFormat}, is to split the input into \textit{logical} \texttt{InputSplit} instances based on the total size, in bytes, of the input files. However, the \texttt{FileSystem} blocksize of the input files is treated as an upper bound for input splits. A lower bound on the split size can be set via \texttt{mapred.min.split.size}.

Clearly, logical splits based on input-size is insufficient for many applications since record boundaries must be respected. In such cases, the application should implement a \texttt{RecordReader}, who is responsible for respecting record-boundaries and presents a record-oriented view of the logical \texttt{InputSplit} to the individual task.

\texttt{TextInputFormat} is the default \texttt{InputFormat}.

If \texttt{TextInputFormat} is the \texttt{InputFormat} for a given job, the framework detects input-files with the \texttt{.gz} extensions and automatically decompresses them using the appropriate \texttt{CompressionCodec}. However, it must be noted that compressed files with the above extensions cannot be split and each compressed file is processed in its entirety by a single mapper.

\texttt{InputSplit}

\texttt{InputSplit} represents the data to be processed by an individual Mapper. Typically \texttt{InputSplit} presents a byte-oriented view of the input, and it is the responsibility of \texttt{RecordReader} to process and present a record-oriented view.

\texttt{FileSplit} is the default \texttt{InputSplit}. It sets \texttt{map.input.file} to the path of the input file for the logical split.

\texttt{RecordReader}

\texttt{RecordReader} reads pairs from an \texttt{InputSplit}. Typically \texttt{RecordReader} converts the byte-oriented view of the input, provided by the \texttt{InputSplit}, and presents a record-oriented to the Mapper implementations for processing. \texttt{RecordReader} thus assumes the responsibility of processing record boundaries and presents the tasks with keys and values.

\texttt{Job Output}

\texttt{OutputFormat} describes the output-specification for a MapReduce job. The MapReduce framework relies on the \texttt{OutputFormat} of the job to:

1. Validate the output-specification of the job; for example, check that the output directory doesn’t already exist.
2. Provide the RecordWriter implementation used to write the output files of the job. Output files are stored in a FileSystem. TextOutputFormat is the default OutputFormat.

OutputCommitter

OutputCommitter describes the commit of task output for a MapReduce job. The MapReduce framework relies on the OutputCommitter of the job to:

1. Set up the job during initialization. For example, create the temporary output directory for the job during the initialization of the job. Job setup is done by a separate task when the job is in PREP state and after initializing tasks. Once the setup task completes, the job will be moved to RUNNING state.

2. Clean up the job after the job completion. For example, remove the temporary output directory after the job completion. Job cleanup is done by a separate task at the end of the job. Job is declared SUCCEEDED/FAILED/KILLED after the cleanup task completes.

3. Setup the task temporary output. Task setup is done as part of the same task, during task initialization.

4. Check whether a task needs a commit. This is to avoid the commit procedure if a task does not need commit.

5. Commit of the task output. Once task is done, the task will commit it’s output if required.

6. Discard the task commit. If the task has been failed/killed, the output will be cleaned-up. If task could not cleanup (in exception block), a separate task will be launched with same attempt-id to do the cleanup.

FileOutputCommitter is the default OutputCommitter. Job setup/cleanup tasks occupy map or reduce slots, whichever is free on the TaskTracker. And JobCleanup task, TaskCleanup tasks and JobSetup task have the highest priority, and in that order.

Task Side-Effect Files

In some applications, component tasks need to create and/or write to side files, which differ from the actual job output files.

In such cases there could be issues with two instances of the same Mapper or Reducer running simultaneously (for example, speculative tasks) trying to open and/or write to the same file (path) on the FileSystem. Hence you must pick unique names per task-attempt (using the attemptId, say attempt_200709221812_0001_m_000000_0), not just per task.

To avoid these issues the MapReduce framework, when the OutputCommitter is FileOutputCommitter, maintains a special ${mapred.output.dir}/temporary/${taskid} sub-directory accessible via ${mapred.work.output.dir} for each task-attempt on the FileSystem where the output of the task-attempt is stored. On successful completion of the task-attempt, the files in the ${mapred.output.dir}/temporary/${taskid} (only) are promoted to
Of course, the framework discards the sub-directory of unsuccessful task-attempts. This process is completely transparent to the application.

The application-writer can take advantage of this feature by creating any side-files required in ${mapred.work.output.dir} during execution of a task via FileOutputFormat.getWorkOutputPath(), and the framework will promote them similarly for successful task-attempts, thus eliminating the need to pick unique paths per task-attempt.

Note: The value of ${mapred.work.output.dir} during execution of a particular task-attempt is actually ${mapred.output.dir}/temporary/${taskid} and this value is set by the MapReduce framework. So, just create any side-files in the path returned by FileOutputFormat.getWorkOutputPath() from MapReduce task to take advantage of this feature.

The entire discussion holds true for maps of jobs with reducer=NONE (that is, 0 reduces) since output of the map, in that case, goes directly to HDFS.

RecordWriter

RecordWriter writes the output key-value pairs to an output file. RecordWriter implementations write the job outputs to the filesystem.

Other Useful Features

Submitting Jobs to Queues

You submit jobs to Queues. Queues, as collection of jobs, allow the system to provide specific functionality. For example, queues use ACLs to control which users who can submit jobs to them. Queues are expected to be primarily used by Hadoop Schedulers.

Hadoop comes configured with a single mandatory queue, called ‘default’. Queue names are defined in the mapred.queue.names property of the Hadoop site configuration. Some job schedulers, such as the Capacity Scheduler, support multiple queues.

A job defines the queue it needs to be submitted to through the mapred.job.queue.name property, or through the setQueueName(String) API. Setting the queue name is optional. If a job is submitted without an associated queue name, it is submitted to the ‘default’ queue.

Counters

Counters represent global counters, defined either by the MapReduce framework or applications. Each Counter can be of any Enum type. Counters of a particular Enum are bunched into groups of type Counters.Group.

Applications can define arbitrary Counters (of type Enum) and update them via Reporter.incrCounter(Enum, long) or Reporter.incrCounter(String, String, long) in the map and/or reduce methods. These counters are then globally aggregated by the framework.
DistributedCache

DistributedCache distributes application-specific, large, read-only files efficiently. *DistributedCache* is a facility provided by the MapReduce framework to cache files (text, archives, JARs, and so on) needed by applications.

Applications specify the files to be cached via urls (`hdfs://`) in the `JobConf`. The *DistributedCache* assumes that the files specified via `hdfs://` urls are already present on the FileSystem.

The framework will copy the necessary files to the slave node before any tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only copied once per job and the ability to cache archives which are un-archived on the slaves.

DistributedCache tracks the modification timestamps of the cached files. Clearly the cache files should not be modified by the application or externally while the job is executing.

DistributedCache can be used to distribute simple, read-only data/text files and more complex types such as archives and JAR files. Archives (zip, tar, tgz and tar.gz files) are *un-archived* at the slave nodes. Files have *execution permissions* set.

The files and archives can be distributed by setting the property `mapred.cache.{files|archives}`. If more than one file/archive has to be distributed, they can be added as comma separated paths. The properties can also be set by APIs `DistributedCache.addCacheFile(URI,conf)`/*DistributedCache.addCacheArchive(URI,conf)* and `DistributedCache.setCacheFiles(URIs,conf)`/*DistributedCache.setCacheArchives(URIs,conf)* where URI is of the form `hdfs://host:port/absolute-path#link-name`. In Streaming, the files can be distributed through command line option `-cacheFile`/*-cacheArchive`.

Optionally you can also direct the *DistributedCache* to *symlink* the cached file(s) into the current working directory of the task via the `DistributedCache.createSymlink(Configuration)` API. Or by setting the configuration property `mapred.create.symlink` as `yes`. The *DistributedCache* will use the fragment of the URI as the name of the symlink. For example, the URI `hdfs://namenode:port/lib.so.1#lib.so` will have the symlink name as `lib.so` in the task's cwd for the file `lib.so.1` in distributed cache.

The *DistributedCache* can also be used as a rudimentary software distribution mechanism for use in the map and/or reduce tasks. It can be used to distribute both jars and native libraries. The `DistributedCache.addArchiveToClassPath(Path, Configuration)` or `DistributedCache.addFileToClassPath(Path, Configuration)` API can be used to cache files/jars and also add them to the classpath of child-jvm. The same can be done by setting the configuration properties `mapred.job.classpath.{files|archives}`. Similarly the cached files that are symlinked into the working directory of the task can be used to distribute native libraries and load them.

Tool

The *Tool* interface supports the handling of generic Hadoop command-line options. Tool is the standard for any MapReduce tool or application. The application should delegate the handling of standard
command-line options to GenericOptionsParser via ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:

```
-command-line options to GenericOptionsParser via ToolRunner.run(Tool, String[]) and only handle its custom arguments.

The generic Hadoop command-line options are:

- -conf <configuration file>
- -D <property=value>
- -fs <local|namenode:port>
- -jt <local|jobtracker:port>
```

IsolationRunner

IsolationRunner is a utility to help debug MapReduce programs.

To use IsolationRunner, first set keep.failed.task.files to true (also see keep.tasks.files.pattern).

Next, go to the node on which the failed task ran and go to the TaskTracker’s local directory and run IsolationRunner:

```
$ cd <local path>/taskTracker/${taskid}/work
$ hadoop org.apache.hadoop.mapred.IsolationRunner ../job.xml
```

IsolationRunner will run the failed task in a single JVM, which can be in the debugger, over precisely the same input.

Profiling

Profiling is a utility to get a representative (2 or 3) sample of built-in Java profiler for a sample of maps and reduces.

You can specify whether the system should collect profiler information for some of the tasks in the job by setting the configuration property mapred.task.profile. The value can be set using the API JobConf.setProfileEnabled(boolean). If the value is set true, the task profiling is enabled. The profiler information is stored in the user log directory. By default, profiling is not enabled for the job.

Once you configure that profiling is needed, you can use the configuration property mapred.task.profile.{maps|reduces} to set the ranges of MapReduce tasks to profile. The value can be set using the API JobConf.setProfileTaskRange(boolean,String). By default, the specified range is 0-2.

You can also specify the profiler configuration arguments by setting the configuration property mapred.task.profile.params. The value can be specified using the API JobConf.setProfileParams(String). If the string contains a %s, it will be replaced with the name of the
profiling output file when the task runs. These parameters are passed to the task child JVM on the
command line. The default value for the profiling parameters is –
agentlib:hprof=cpu=samples,heap=sites,force=n,thread=y,verbose=n,file=%s

Debugging

The MapReduce framework provides a facility to run user-provided scripts for debugging. When a
MapReduce task fails, you can run a debug script, to process task logs for example. The script is given
access to the task’s stdout and stderr outputs, syslog and jobconf. The output from the debug script’s
stdout and stderr is displayed on the console diagnostics and also as part of the job UI.

In the following sections we discuss how to submit a debug script with a job. The script file needs to be
distributed and submitted to the framework.

How to distribute the script file:

Use DistributedCache to distribute and symlink the script file.

How to submit the script:

A quick way to submit the debug script is to set values for the properties
mapred.map.task.debug.script and mapred.reduce.task.debug.script, for debugging map
and reduce tasks respectively. These properties can also be set by using APIs
JobConf.setMapDebugScript(String) and JobConf.setReduceDebugScript(String). In streaming mode, a
debug script can be submitted with the command-line options –mapdebug and –reducedebug, for
debugging map and reduce tasks respectively.

The arguments to the script are the task’s stdout, stderr, syslog and jobconf files. The debug command,
run on the node where the MapReduce task failed, is:
$script $stdout $stderr $syslog $jobconf

Pipes programs have the c++ program name as a fifth argument for the command. Thus for the pipes
programs the command is
$script $stdout $stderr $syslog $jobconf $program

Default Behavior:

For pipes, a default script is run to process core dumps under gdb, prints stack trace and gives info about
running threads.

JobControl

JobControl is a utility that encapsulates a set of MapReduce jobs and their dependencies.

Data Compression

Hadoop MapReduce provides facilities to specify compression for both intermediate map outputs and
the job outputs, that is the output of the reduces. It’s very common to enable MapReduce intermediate
compression, since this can make jobs run faster without you having to make any application changes.
Only the temporary intermediate files created by Hadoop for the shuffle phase are compressed (the
final output may or may not be compressed).
Hadoop comes bundled with CompressionCodec implementations of zlib, gzip, and snappy compression. Snappy is recommended because it compresses and decompresses very fast compared to other compression algorithms, such as gzip.

Hadoop also provides native implementations of the zlib and gzip compression codecs for reasons of both performance (zlib) and non-availability of Java libraries. More details on their usage and availability are available [here](#).

Intermediate Outputs

Applications can control compression of intermediate map outputs via the JobConf.setCompressMapOutput(boolean) API and the CompressionCodec to be used via the JobConf.setMapOutputCompressorClass(Class) API.

Job Outputs

Applications can control compression of job-outputs via the FileOutputFormat.setCompressOutput(JobConf, boolean) API and the CompressionCodec to be used can be specified via the FileOutputFormat.setOutputCompressorClass(JobConf, Class) API.

If the job outputs are to be stored in the SequenceFileOutputFormat, the required SequenceFile.CompressionType (that is, RECORD / BLOCK – defaults to RECORD) can be specified via the SequenceFileOutputFormat.setOutputCompressionType(JobConf, SequenceFile.CompressionType) API.

Skipping Bad Records

Hadoop provides an option where a certain set of bad input records can be skipped when processing map inputs. Applications can control this feature through the SkipBadRecords class.

This feature can be used when map tasks crash deterministically on certain input. This usually happens due to bugs in the map function. Usually, you would fix these bugs however sometimes this is not possible. The bug may be in third party libraries, for example, for which the source code is not available. In such cases, the task never completes successfully even after multiple attempts, and the job fails. By skipping bad records only a small portion of data surrounding the bad records is lost, which may be acceptable for some applications (those performing statistical analysis on very large data, for example).

By default this feature is disabled. For enabling it, refer to SkipBadRecords.setMapperMaxSkipRecords(Configuration, long) and SkipBadRecords.setReducerMaxSkipGroups(Configuration, long).

With this feature enabled, the framework gets into ‘skipping mode’ after a certain number of map failures. For more details, see SkipBadRecords.setAttemptsToStartSkipping(Configuration, int). In ‘skipping mode’, map tasks maintain the range of records being processed. To do this, the framework relies on the processed record counter. See SkipBadRecords.COUNTER_MAP_PROCESSED_RECORDS and SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS. This counter enables the framework to know how many records have been processed successfully, and hence, what record range caused a task to crash. On further attempts, this range of records is skipped.
The number of records skipped depends on how frequently the processed record counter is incremented by the application. It is recommended that this counter be incremented after every record is processed. This may not be possible in some applications that typically batch their processing. In such cases, the framework may skip additional records surrounding the bad record. You can control the number of skipped records through `SkipBadRecords.setMapperMaxSkipRecords(Configuration, long)` and `SkipBadRecords.setReducerMaxSkipGroups(Configuration, long)`. The framework tries to narrow the range of skipped records using a binary search-like approach. The skipped range is divided into two halves and only one half gets executed. On subsequent failures, the framework figures out which half contains bad records. A task will be re-executed till the acceptable skipped value is met or all task attempts are exhausted. To increase the number of task attempts, use `JobConf.setMaxMapAttempts(int)` and `JobConf.setMaxReduceAttempts(int)`.

Skipped records are written to HDFS in the sequence file format for later analysis. The location can be changed through `SkipBadRecords.setSkipOutputPath(JobConf, Path)`.

Example: WordCount v2.0

Here is a more complete WordCount application that uses many of the features provided by the MapReduce framework discussed so far.

Source Code

```java
package org.myorg;

import java.io.*;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;

public class WordCount extends Configured implements Tool {

    public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {

        static enum Counters { INPUT_WORDS }

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        private boolean caseSensitive = true;
        private Set<String> patternsToSkip = new HashSet<String>();

        public void setup(Context context) {
            patternsToSkip =...
        }

        public void map(LongWritable key, Text value, Context context)
        {
            String line = value.toString();

            // Read in each word from the line;
            // remove punctuation;
            // case normalize;
            // check if word should be skipped...
            if...>
        }

        public void reduce(Text key, Iterable<IntWritable> values, Context context)
        {
            int count = 0;
            for (IntWritable val : values) {
                count += val.get();
            }
            context.write(key, one.set(count));
        }

    }

    public static void main(String[] args) throws Exception {
        Job job = new Job(getConf(), WordCount.class.getName());
        JobConf.setJobName(job, WordCount.class.getName());
        JobConf.setInputDirectories(job, new Path(args[0]));
        JobConf.setOutputDirectory(job, new Path(args[1]));
        MapReduceBase.setJarByClass(job, WordCount.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Map.class);
        job.setNumReduceTasks(1);
        job.setNumMapTasks(1);
        job.setJarByClass(WordCount.class);
        job.waitForCompletion(true);
    }

}
```

26 | Hadoop Tutorial
private long numRecords = 0;
private String inputFile;

public void configure(JobConf job) {
 caseSensitive = job.getBoolean("wordcount.case.sensitive", true);
 inputFile = job.get("map.input.file");
 if (job.getBoolean("wordcount.skip.patterns", false)) {
 Path[] patternsFiles = new Path[0];
 try {
 patternsFiles = DistributedCache.getLocalCacheFiles(job);
 } catch (IOException ioe) {
 System.err.println("Caught exception while getting cached files:
 " + StringUtils.stringifyException(ioe));
 }
 for (Path patternsFile : patternsFiles) {
 parseSkipFile(patternsFile);
 }
 }
 private void parseSkipFile(Path patternsFile) {
 try {
 BufferedReader fis = new BufferedReader(new
 FileReader(patternsFile.toString()));
 String pattern = null;
 while ((pattern = fis.readLine()) != null) {
 patternsToSkip.add(pattern);
 }
 } catch (IOException ioe) {
 System.err.println("Caught exception while parsing the cached file
 " + patternsFile + ": " + StringUtils.stringifyException(ioe));
 }
 }
 public void map(LongWritable key, Text value, OutputCollector<Text,
 IntWritable> output, Reporter reporter) throws IOException {
 String line = (caseSensitive) ? value.toString() :
 value.toString().toLowerCase();
 for (String pattern : patternsToSkip) {
 line = line.replaceAll(pattern, "");
 }
 StringTokenizer tokenizer = new StringTokenizer(line);
 while (tokenizer.hasMoreTokens()) {
 word.set(tokenizer.nextToken());
 }
 }
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
 public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
}

public int run(String[] args) throws Exception {
 JobConf conf = new JobConf(getConf(), WordCount.class);
 conf.setJobName("wordcount");
 conf.setOutputKeyClass(Text.class);
 conf.setOutputValueClass(IntWritable.class);
 conf.setMapperClass(Map.class);
 conf.setCombinerClass(Reduce.class);
 conf.setReducerClass(Reduce.class);
 conf.setInputFormat(TextInputFormat.class);
 conf.setOutputFormat(TextOutputFormat.class);
 List<String> other_args = new ArrayList<String>();
 for (int i=0; i < args.length; ++i) {
 if ("-skip".equals(args[i])) {
 DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
 conf.setBoolean("wordcount.skip.patterns", true);
 } else {
 other_args.add(args[i]);
 }
 }
 return 0;
}
FileInputFormat.setInputPaths(conf, new Path(other_args.get(0)));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));

JobClient.runJob(conf);
return 0;
}

public static void main(String[] args) throws Exception {
 int res = ToolRunner.run(new Configuration(), new WordCount(), args);
 System.exit(res);
}

Table 2 WordCount.java V2.0

Sample Runs

Sample text-files as input:

```
$ hadoop fs -ls /user/cloudera/wordcount/input/  
/user/cloudera/wordcount/input/file01 /user/cloudera/wordcount/input/file02

$ hadoop fs -cat /user/cloudera/wordcount/input/file01  
Hello World, Bye World!

$ hadoop fs -cat /user/cloudera/wordcount/input/file02  
Hello Hadoop, Goodbye to hadoop.
```

Run the application:

```
$ hadoop jar wordcount.jar org.myorg.WordCount  
/user/cloudera/wordcount/input /user/cloudera/wordcount/output
```

Output:

```
$ hadoop fs -cat /user/cloudera/wordcount/output/part-00000  
Bye 1  
Goodbye 1  
Hadoop, 1  
Hello 2  
World! 1
```
Notice that the inputs differ from the first version we looked at, and how they affect the outputs. Now, let's plug in a pattern-file which lists the word-patterns to be ignored, via the DistributedCache.

```
$ hadoop fs -cat /user/cloudera/wordcount/patterns.txt
\. 
\,
\!
to
```

Run it again, this time with more options:

```
$ hadoop jar wordcount.jar org.myorg.WordCount -
Dwordcount.case.sensitive=true /user/cloudera/wordcount/input
/user/cloudera/wordcount/output -skip /user/cloudera/wordcount/patterns.txt
```

As expected, the output:

```
$ hadoop fs -cat /user/cloudera/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 1
Hello 2
World 2
hadoop 1
```

Run it once more, this time switch off case-sensitivity:

```
$ hadoop jar wordcount.jar org.myorg.WordCount -
Dwordcount.case.sensitive=false /user/cloudera/wordcount/input
/user/cloudera/wordcount/output -skip /user/cloudera/wordcount/patterns.txt
```

Sure enough, the output:
Example: WordCount v2.0

```bash
$ hadoop fs -cat /user/cloudera/wordcount/output/part-00000
bye 1
goodbye 1
hadoop 2
hello 2
world 2
```

Highlights

The second version of WordCount demonstrates some additional features offered by the MapReduce framework:

- How applications can access configuration parameters in the `configure` method of the Mapper (and Reducer) implementations (lines 28-43).
- How the `DistributedCache` can be used to distribute read-only data needed by the jobs. Here it allows you to specify word-patterns to skip while counting (line 104).
- How the `Tool` interface and `GenericOptionsParser` are used to handle generic Hadoop command-line options (lines 87-116, 119).
- How applications can use `Counters` (line 68) to set application-specific status information via the `Reporter` instance passed to the `map` (and `reduce`) method (line 72).

`Java` and `JNI` are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.