

Bluetooth

Bluetooth Basics Bluetooth and Linux Bluetooth at AG Tech

Dr.-Ing. H. Ritter, http://www.hartmut-ritter.de/

I. Bluetooth

- Idea
 - Universal radio interface for ad-hoc wireless connectivity
 - Interconnecting computer and peripherals, handheld devices, PDAs, cell phones – replacement of IrDA
 - Embedded in other devices, goal: 5€/device (2002: 50€/USB bluetooth)
 - Short range (10 m), low power consumption, license-free 2.45 GHz ISM
 - Voice and data transmission, approx. 1 Mbit/s gross data rate

Basics

- History
 - 1994: Ericsson (Mattison/Haartsen), "MC-link" project
 - Renaming of the project: Bluetooth according to Harald "Blåtand" Gormsen [son of Gorm], King of Denmark in the 10th century
 - 1998: foundation of Bluetooth SIG, <u>www.bluetooth.org</u>
 - 2001: first consumer products for mass market, spec. version 1.1 released
- Special Interest Group
 - Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
 - Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
 - > 2500 members
 - Common specification and certification of products

Characteristics

- 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz ... channel 78: 2480 MHz
 - G-FSK modulation, 1-100 mW transmit power
- FHSS and TDD
 - Frequency hopping with 1600 hops/s
 - Hopping sequence in a pseudo random fashion, determined by a master
 - Time division duplex for send/receive separation
- Voice link SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet

Piconet

- Collection of devices connected in an ad hoc fashion
- One unit acts as master and the others as slaves for the lifetime of the piconet
- Master determines hopping pattern, slaves have to synchronize
- Each piconet has a unique hopping pattern
- Participation in a piconet = synchronization to hopping sequence

M=Master P=Parked S=Slave SB=Standby

Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - Active Member Address (AMA, 3 bit)
 - Parked Member Address (PMA, 8 bit)

Scatternet

- Linking of multiple co-located piconets through the sharing of common master or slave devices
 - Devices can be slave in one piconet and master of another
 - Devices jumping back and forth between the piconets

Bluetooth protocol stack

AT: attention sequence OBEX: object exchange TCS BIN: telephony control protocol specification – binary BNEP: Bluetooth network encapsulation protocol SDP: service discovery protocol RFCOMM: radio frequency comm.

Baseband

- Piconet/channel definition
- Low-level packet definition
 - Access code
 - Channel, device access, e.g., derived from master
 - Packet header
 - 1/3-FEC, active member address (1 master, 7 slaves), link type, alternating bit ARQ/SEQ, checksum

Baseband states of a Bluetooth device

Standby: do nothing Inquire: search for other devices Page: connect to a specific device Connected: participate in a piconet

Park: release AMA, get PMA Sniff: listen periodically, not each slot Hold: stop ACLs, SCO still possible, possibly participate in another piconet

Baseband link types

- Polling-based TDD packet transmission
 - 625µs slots, master polls slaves
- SCO (Synchronous Connection Oriented) Voice
 - Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- ACL (Asynchronous ConnectionLess) Data
 - Variable packet size (1,3,5 slots), asymmetric bandwidth, point-tomultipoint

Security

L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband
- Connection oriented, connectionless, and signalling channels
- Protocol multiplexing
 - RFCOMM, SDP, telephony control
- Segmentation & reassembly
 - Up to 64kbyte user data, 16 bit CRC
- QoS flow specification per channel
 - Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
- Group abstraction
 - Create/close group, add/remove member

- Inquiry/response protocol for discovering services
 - Searching for and browsing services in radio proximity
 - Adapted to the highly dynamic environment
 - Defines discovery only, not the usage of services
 - Caching of discovered services
- Service record format
 - Information about services provided by attributes
 - Attributes are composed of an 16 bit ID (name) and a value
 - IDs may be derived from 128 bit Universally Unique Identifiers (UUID)

Additional protocols

- RFCOMM
 - Emulation of a serial port (supports a large base of legacy applications)
 - Allows multiple ports over a single physical channel
- Telephony Control Protocol Specification (TCS)
 - Call control (setup, release)
 - Group management
- OBEX
 - Exchange of objects, IrDA replacement

Profiles

- Represent default solutions for a certain usage model
 - Vertical slice through the protocol stack
 - Basis for interoperability
- Generic Access Profile
- Service Discovery Application Profile
- Cordless Telephony Profile
- Intercom Profile
- Serial Port Profile
- Headset Profile
- Dial-up Networking Profile
- Fax Profile
- LAN Access Profile
- Generic Object Exchange Profile
- Object Push Profile
- File Transfer Profile
- Synchronization Profile

Additional Profiles Advanced Audio Distribution PAN Audio Video Remote Control Basic Printing Basic Imaging Extended Service Discovery Generic Audio Video Distribution Hands Free Hardcopy Cable Replacement

II. Bluetooth under Linux

- Source for information: <u>http://bluez.sourceforge.net/howto/</u>
- Relevant configs:
 - /etc/hcid.conf, /etc/bluetooth/pin, /etc/rc.d/init.d/bluetooth, /etc/pcmcia/bluetooth, /etc/pcmcia/bluetooth.conf
- USB device:
 - modprobe hci_usb
 - hciconfig hci0 up
- Tools:
 - hcitool
 - I2ping
 - I2test, scotest
 - hcidump (like tcpdump)
- Example: http://bluez.sourceforge.net/howto/node30.html
- Set up PPP over Bluetooth, running SDPd (SDP daemon), open bluetooth socket, deploy BNEP, ...

III. Bluetooth at AG Tech

- Usage of Bluetooth modules from CSR (Cambridge Silicon Radio)
- 66% of market, Linux driver available, very good documentation
- On-board microcontroller handles
 basic bluetooth protocol functions
- SDK available for µC-programming
- USB and UART interfaces
 ⇒ looks like a "normal" device

- Compaq iPAQ with bluetooth (CSR module...)
 - Bluetooth is now working (http://www.handhelds.org/projects/h3800.html)
 - NEW: dual boot iPAQs!
- Goal: Matchbox-sized web server with IP network access and display

- Interoperability Bluetooth ⇔ WLAN
 - Same frequency, different access, no coordination
 - IEEE working group: Adaptive Frequency Hopping
- Service Discovery:
 - Using Service Discovery Protocol (SDP) for immediate access to services in a room or location
 - Integration with other service discovery architectures (ESDP, UPnP, Jini, .NET, ...)
- Ad-hoc networking
 - How to build spontaneous networks
 - How to make this fast, but secure

Bluetooth/USB adapter (2002: 50€)

Dr.-Ing. H. Ritter, http://www.hartmut-ritter.de/