Bluetooth

Bluetooth Basics
Bluetooth and Linux
Bluetooth at AG Tech
I. Bluetooth

- **Idea**
 - Universal radio interface for ad-hoc wireless connectivity
 - Interconnecting computer and peripherals, handheld devices, PDAs, cell phones – replacement of IrDA
 - Embedded in other devices, goal: 5€/device (2002: 50€/USB bluetooth)
 - Short range (10 m), low power consumption, license-free 2.45 GHz ISM
 - Voice and data transmission, approx. 1 Mbit/s gross data rate

One of the first modules (Ericsson)
Basics

• History
 – Renaming of the project: Bluetooth according to Harald “Blåtand” Gormsen [son of Gorm], King of Denmark in the 10th century
 – 2001: first consumer products for mass market, spec. version 1.1 released

• Special Interest Group
 – Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
 – Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
 – > 2500 members
 – Common specification and certification of products
Characteristics

- 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz … channel 78: 2480 MHz
 - G-FSK modulation, 1-100 mW transmit power
- FHSS and TDD
 - Frequency hopping with 1600 hops/s
 - Hopping sequence in a pseudo random fashion, determined by a master
 - Time division duplex for send/receive separation
- Voice link – SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link – ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet
Piconet

- Collection of devices connected in an ad hoc fashion
- One unit acts as master and the others as slaves for the lifetime of the piconet
- Master determines hopping pattern, slaves have to synchronize
- Each piconet has a unique hopping pattern
- Participation in a piconet = synchronization to hopping sequence
- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)

M=Master P=Parked S=Slave SB=Standby
Forming a piconet

• All devices in a piconet hop together
 – Master gives slaves its clock and device ID
 • Hopping pattern: determined by device ID (48 bit, unique worldwide)
 • Phase in hopping pattern determined by clock

• Addressing
 – Active Member Address (AMA, 3 bit)
 – Parked Member Address (PMA, 8 bit)
Scatternet

- Linking of multiple co-located piconets through the sharing of common master or slave devices
 - Devices can be slave in one piconet and master of another
 - Devices jumping back and forth between the piconets

\[
\text{M=Master} \\
\text{S=Slave} \\
\text{P=Parked} \\
\text{SB=Standby}
\]

Piconets (each with a max. capacity of 720 kbit/s)
Bluetooth protocol stack

- **Radio**
 - Baseband
 - Link Manager

- **Link Manager**
 - Logical Link Control and Adaptation Protocol (L2CAP)
 - RFCOMM (serial line interface)
 - Audio
 - vCal/vCard (OBEX)
 - NW apps. (TCP/UDP, IP, PPP/BNEP)
 - telephony apps. (AT modem commands, TCS BIN)
 - mgmt. apps. (SDP)

AT: attention sequence
OBEX: object exchange
TCS BIN: telephony control protocol specification – binary
BNEP: Bluetooth network encapsulation protocol
SDP: service discovery protocol
RFCOMM: radio frequency comm.

Baseband

- Piconet/channel definition
- Low-level packet definition
 - Access code
 - Channel, device access, e.g., derived from master
 - Packet header
 - 1/3-FEC, active member address (1 master, 7 slaves), link type, alternating bit ARQ/SEQ, checksum

```
<table>
<thead>
<tr>
<th>bits</th>
<th>68(72)</th>
<th>54</th>
<th>0-2745</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>access code</td>
<td>packet header</td>
<td>payload</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>bits</th>
<th>4</th>
<th>64</th>
<th>(4)</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>preamble</td>
<td>sync.</td>
<td>(trailer)</td>
<td>AM address</td>
<td>type</td>
<td>flow</td>
<td>ARQN</td>
<td>SEQN</td>
<td>HEC</td>
</tr>
</tbody>
</table>
```
Baseband states of a Bluetooth device

- **standby**: do nothing
- **inquiry**: search for other devices
- **page**: connect to a specific device
- **connected**: participate in a piconet
- **detach**: typ. 2s
- **transmit AMA**: typ. 2ms
- **park PMA**: typ. 2s
- **hold AMA**: typ. 0.6s
- **sniff AMA**: typ. 0.6s

- **unconnected**: active
- **connecting**: low power
- **active**: low power

Park: release AMA, get PMA
Sniff: listen periodically, not each slot
Hold: stop ACLs, SCO still possible, possibly participate in another piconet

Baseband link types

- Polling-based TDD packet transmission
 - 625μs slots, master polls slaves
- SCO (Synchronous Connection Oriented) – Voice
 - Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- ACL (Asynchronous ConnectionLess) – Data
 - Variable packet size (1, 3, 5 slots), asymmetric bandwidth, point-to-multipoint
L2CAP - Logical Link Control and Adaptation Protocol

- Simple data link protocol on top of baseband

- Connection oriented, connectionless, and signalling channels

- Protocol multiplexing
 - RFCOMM, SDP, telephony control

- Segmentation & reassembly
 - Up to 64kbyte user data, 16 bit CRC

- QoS flow specification per channel
 - Follows RFC 1363, specifies delay, jitter, bursts, bandwidth

- Group abstraction
 - Create/close group, add/remove member
SDP – Service Discovery Protocol

• Inquiry/response protocol for discovering services
 – Searching for and browsing services in radio proximity
 – Adapted to the highly dynamic environment
 – Defines discovery only, not the usage of services
 – Caching of discovered services

• Service record format
 – Information about services provided by attributes
 – Attributes are composed of an 16 bit ID (name) and a value
 – IDs may be derived from 128 bit Universally Unique Identifiers (UUID)
Additional protocols

• RFCOMM
 – Emulation of a serial port (supports a large base of legacy applications)
 – Allows multiple ports over a single physical channel

• Telephony Control Protocol Specification (TCS)
 – Call control (setup, release)
 – Group management

• OBEX
 – Exchange of objects, IrDA replacement
Profiles

- Represent default solutions for a certain usage model
 - Vertical slice through the protocol stack
 - Basis for interoperability
- Generic Access Profile
- Service Discovery Application Profile
- Cordless Telephony Profile
- Intercom Profile
- Serial Port Profile
- Headset Profile
- Dial-up Networking Profile
- Fax Profile
- LAN Access Profile
- Generic Object Exchange Profile
- Object Push Profile
- File Transfer Profile
- Synchronization Profile

Additional Profiles
- Advanced Audio Distribution
- PAN
- Audio Video Remote Control
- Basic Printing
- Basic Imaging
- Extended Service Discovery
- Generic Audio Video Distribution
- Hands Free
- Hardcopy Cable Replacement
II. Bluetooth under Linux

• Source for information: http://bluez.sourceforge.net/howto/
• Relevant configs:
 – /etc/hcid.conf, /etc/bluetooth/pin, /etc/rc.d/init.d/bluetooth,
 /etc/pcmcia/bluetooth, /etc/pcmcia/bluetooth.conf
• USB device:
 – modprobe hci_usb
 – hciconfig hci0 up
• Tools:
 – hcitool
 – l2ping
 – l2test, scotest
 – hcidump (like tcpdump)
• Example: http://bluez.sourceforge.net/howto/node30.html
• Set up PPP over Bluetooth, running SDPd (SDP daemon), open
 bluetooth socket, deploy BNEP, …
III. Bluetooth at AG Tech

- Usage of Bluetooth modules from CSR (Cambridge Silicon Radio)
 - 66% of market, Linux driver available, very good documentation
- On-board microcontroller handles basic bluetooth protocol functions
- SDK available for µC-programming
- USB and UART interfaces ⇒ looks like a „normal“ device
- Compaq iPAQ with bluetooth (CSR module…)
 - Bluetooth is now working (http://www.handhelds.org/projects/h3800.html)
 - NEW: dual boot iPAQs!
- Goal: Matchbox-sized web server with IP network access and display
Bluetooth Research

• Interoperability Bluetooth ⇔ WLAN
 – Same frequency, different access, no coordination
 – IEEE working group: Adaptive Frequency Hopping

• Service Discovery:
 – Using Service Discovery Protocol (SDP) for immediate access to services in a room or location
 – Integration with other service discovery architectures (ESDP, UPnP, Jini, .NET, …)

• Ad-hoc networking
 – How to build spontaneous networks
 – How to make this fast, but secure
Bluetooth/USB adapter (2002: 50€)