

Development of 4-Stroke Marine Dual fuel engine (ClassNK joint R&D project)

Tetsuji YAMADA Group Leader, Technical Department DAIHATSU DIESEL MFG.CO.,LTD

DAIHATSU

July.2014 LNG-Fuelled Vessel Technologies Seminar

Natural gas (Henry Hub, left axis)

120 001 Dollar/Barrel

20

(Year)

Crude oil (WTL right axis)

1. Motivation for DF engine development

- Stricter IMO emission limitation in ECA area (TierII)
- Redundancy for fuel, depending on fuel price (oil or gas)

Shift from diesel to DF engine is increasing!

2.1 Project scheme (Project objective)

- NOx is less than...
 - -Tier

 Imitation by gas mode operation

 (without aftertreatment e.g.SCR)
 - -Tier I limitation by diesel mode operation
- Control strategy for switch over between diesel and gas mode
- Improvement of transient response behaviour on gas mode
- Secure the reliability

3.1 Project contents (Principal specification)

Bore x Stroke	[mm]	Ф280 х 390
Cylinder No.	[-]	6
Firing order	[-]	1-2-4-6-5-3
Engine speed	[min-1]	720/750
Rated output	[kW]	1,730
ВМЕР	[MPa]	2.0
Peak firing pressure	[MPa]	17.7
NOx emission	[-]	≦TierⅢ(Gas mode) ≦TierⅡ(Diesel mode)
Main fuel	[-]	Natural gas (Gas mode) MDO,MGO,HFO(Diesel mode)
Pilot fuel (Gas mode)	[-]	MDO or MGO(1% of total heat value)

This engine has *Reliability and durability*, because is converted from DK-28 diesel engine which has many shipments and experiences.

3.2 Project contents (Engine structure)

Investigation for cylinderhead design

FEM calculation was carried out.

Secure safety margin for material strength was confirmed by demonstration test.

3.2 Project contents (Engine structure)

Optimization for mixture formation

1 Central Pipe, without Slots, SOGAV 105

1 Central Pipe, without Slots, SOGAV 43

2 Pipes, 1 Pipe with Slots, SOGAV 105

1 Central Pipe, with Slots, SOGAV 105

Evaluation point

- ➤ Capacity of gas admission valve
- ➤ Remain gas quantity in intake port
- ➤ Mixture homogeneity between gas and air in the cylinder

Configuration of gas admission was optimized by *CFD simulation*.

3.3 Project contents (Engine control)

Sophisticated Engine Control System (ECS) to realize comprehensive control functions

- Start & Stop sequence
- •Speed/load control:
 - Diesel fuel injection pump rack control
 - ▶Gas admission valve control
- Switch over procedure between diesel and gas mode
- •Air fuel ratio control:
 - **▶**Waste gate
 - **▶**Compressor by-pass
- Ignition control by electronic micropilot injection (Common rail system)
- •Gas supply management:
 - ▶ Gas pressure control
 - ► Sequencing of gas valves
- Safety, Monitoring and knocking control by in-cylinder pressure sensing

3.3 Project contents (Engine control)

3.3 Project contents (Engine control)

Knock control by retarding cyl.-individual injection timing

3.4 Project contents (Safety consideration)

Inherently gas safe machinery spaces

3.4 Project contents (Safety consideration)

- Monitoring of combustion and other conditions
- > Double wall gas pipe, Injection of inert gas if necessary
- Ventilation in double wall gas pipe
- Gas leakage monitoring
- Switch over to Diesel mode immediately if necessary
- Prevention of explosion damage (installation of pressure relief valve with flame arrestor)
- > Installation of oil mist detector
- Installation of exhaust purge fan after turbocharger

3.5 Project contents (Engine assembly & testing)

4.1 Test results (Engine performance)

Optimized parameter for engine performance

- > <u>Diesel mode</u>
 - Intake & Exhaust valve timing
 - Fuel injection timing
- > Gas mode
 - Intake & Exhaust valve timing
 - A/F-ratio
 - Micropilot injection timing & quantity
 - Differential pressure(gas-boost press.)

4.2 Test results (Operation mode switch)

Switch over from diesel to Gas mode operation

※The following data is slow switch over at 50% engine load.

Switching time: 10s at 25%, 20s at 50%, 30s at 75% engine load

4.2 Test results (Operation mode switch)

Switch over from gas to diesel mode operation (Immediately)

※The following data is during 100% engine load.

Immediate switch over without fluctuation is possible.

4.3 Test results (Transient response behavior)

Source:CIMAC Gas engine working group position paper Transient response behaviour for Gas engine J (2011/4)

Transient response from higher base load for gas mode is *restricted by knocking combustion*.

This project was carried out with the support of ClassNK as part of the ClassNK Joint R&D for Industry Program.

Thank you very much for your attention!

