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Background
\

» HVDC transmission lines and cables need repairs
quickly as possible after a fault.

» Travelling wave based fault location is the common
fault location method applied in HVDC transmission
lines.

» IGBT based voltage source converter (VSC) HVDC
systems are gradually gaining ground.
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Presentation Notes
Many new generation sources, specially the renewable sources such as large onshore and offshore wind farms are located far from the load centres.
High Voltage Direct Current (HVDC) transmission has distinct advantages when transmitting large amounts of power over long distances.



Problem definition

‘\

» No publications dealing with the fault location in VSC
HVDC schemes with such long cable connections.

» The large DC capacitance at the converter terminal.

» Measurement bandwidth of the transducers.
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Presentation Notes

In long cables, the magnitude of travelling waves can decrease to a level that makes accurate determination of the travelling wave arrival time difficult.



Objectives

\

» Development of a method of measurement for
detecting travelling wave arrival times in a VSC HVDC
scheme.

» Testing and verification of the proposed
measurement system through simulations.

> Investigate the effect of different parameters on the
accuracy of fault location.
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Presentation Notes
The proposed method of measurement can be validated only through the simulations, as experimentation using a real system is not practical. However, this is not a major limitation since well-established and validated tools exist for power system simulation.  This thesis utilizes the well-known electromagnetic transient (EMT) simulation program PSCAD/EMTDC and Matlab software for all the simulations. Since the fault location in cables is more difficult than in overhead transmission lines, most case studies consider a VDC HVDC scheme with a 300 km long DC cable.


Line fault location methods

‘\

» Techniques based on impedance
measurement

» Techniques based on high frequency
spectrums of the currents and voltages

» Machine learning based approaches

» Techniques based on travelling waves
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Travelling wave based fault location

\
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Current LFL technology
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> Detection methods




Current LFL technology

> Detection methods %

» Time stamping




Current LFL technology

» Detection methods %
» Time stamping

» Typical accuracies
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Line Termination in LCC and VSC
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Travelling waves incident on junction
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Travelling waves incident on junction
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Travelling waves incident on junction
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Travelling waves incident on junction
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Travelling waves incident on junction
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Travelling waves incident on junction
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Terminal voltage
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Terminal Current
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Terminal Current

Less sharp terminal Current
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Problems with line voltage and

current measurements

‘\

» Transducers need to be installed at very high
potentials.

» Insulations requirements.

» Electrical isolation between sensor output and the data
acquisition system.

» Bulky and expensive instrumentation.



Surge capacitor current
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Rate of change of the surge

Rate of change of surge capacitor current
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Proposed termination
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Experimental results
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Experimental results

Rogowski coil voltage [V]
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\

» If there is no series inductor
» voltage or surge cap cannot be used
» Current can be used

» With series inductor
» voltage or surge cap can be used

» The value of the series inductor is not that important
as long as itis above 1 mH.



Modelling of Rogowski Coil
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Equivalent Circuit of Rogowski Coil
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Parameters of the designed

Rogowski coil

Inner radius 51.37 mm

Outer radius 57.49 mm

Number of Turns 870

measured calculated
Resistance 4 Q 3.9Q
Self-Inductance 81 uH 81 uH

Capacitance * - 13 pF

Mutual-Inductance 0.093 uH 0.093 pH

* Capacitance is too small to measure






Verification of the Rogowski coil
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Verification of the Rogowski coil
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Line Fault Location Performance
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Terminal voltages and Currents

200 -170¢t Con. 1
E E —-=-=Con. 2
S S -190f
£ 180¢ T =
S Con. 1 S

— o Con. 2 '210 [
160 ' ' ' '
600 601 602 603 600 601 602 603
(@) Time [mS] (b) Time [MmS]

15 g g 1
—_ 1t ’,.....-'—--'-"—"- — 0.5
% 05k = =i =c=" /7 % ot
S S
: 0_ C 1 : _0.5— .................. .C:—-—lnﬂ
= / on. 3 on.
o O I

'05 - - C0n2 _1 _'_"COn.2

-1 ' ! -1.5 ! !
600 601 602 603 600 601 602 603
(c) Time [mS] (d) Time [mS]

solid pole-to-ground fault on positive pole 130 km from Converter-1



Surge Capacitor currents and

Rogowski coil Voltages
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Threshold setting
\

Actual fault Fault location errors (km

location (km) visual inspection

0.233

0.721
0.578
-0.476

-0.327

-0.863

Threshold 1

0.209
0.707
0.567
-0.394
-0.286

-0.807

Threshold 10

-0.209
0.326
0.453
-0.172
-0.019

-0.424

Threshold 25

0.097

0.123
0.193
-0.115
0.106

-0.165



Threshold setting and fault resistance
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Threshold setting and fault resistance
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Threshold setting and fault resistance
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Threshold setting and fault resistance/low
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Possibilities of improving the
accuracy

T

» Modal Transform

» Remove the coupling between conductors.

» Filtering
» Selecting frequency band.



Modal transform
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Fault Location errors /[Modal

transform

\

Actual fault location (km) Fault location error (km)

No M.Trans.

0.209
0.707
0.567
-0.394
-0.286

-0.807

Solid-Fault

Mode ‘0’
0.172
0.707
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-0.467
-0.286

-0.807

Mode ‘1’
0.209
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-0.431
-0.286

-0.807



Fault Location errors /[Modal

transform

I‘
Actual fault location (km) Fault location error (km

No M.Trans. Mode ‘0’ Mode ‘1’

-0.088 -0.119 -0.095
0.427 0.402 0.452
0.474 0.432 0.479
-0.182 -0.179 -0.404

-0.100 -0.080 -0.120

-0.499 -0.508 -0.527

100Q) Fault resistance



filtered and unfiltered Rogowski coil

voltages
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Voltage [V]

Line Fault Location Performance
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Fault location with filtered signals

(Threshold-1/Solid fault)

Actual fault Fault location error (km)

location (km) No filter 1MHz 500 kHz 100kHz 50kHz 10kHz

0.172 0.161 0.112 -0.095  0.071 0.159
0.707 0.641 0.576 0.163 0.114 -1.63
0.567 0.510 0.452 -0.004  0.030 -1.121
-0.394 -0.31 -0.190 -0.089  -0.015 1.164
-0.286 -0.278 -0.197 -0.203 -0.011 52.462

-0.807 -0.731 -0.619 -0.216 -0.129 67.948




Fault location with filtered signals

(Threshold-1/100 Q)
o

location (km) No filter 1MHz 500 kHz 100kHz 50kHz 10kHz

-0.088 -0.136 -0.117 0.058 0.140 0.804
0.427 0.362 0.359 0.206 0.129 -2.195
0.474 0.38 0.182 -0.003 0.011 -1.51
-0.182 -0.172 -0.164 -0.071 0.012 1.723

-0.100 -0.056 -0.068 -0.135 0.064 53.374

-0.499 -0.424 -0.414 -0.204 -0.152 68.969



Fault location with filtered signals

(Threshold-10/Solid fault)
o

location (km) No filter 1MHz 500 kHz 100kHz  50kHz 10kHz

-0.209 -0.221 -0.165 -0.038 0.040 0.373
0.326 0.297 0.258 0.041 0.057 -0.057
0.453 0.176 0.015 0.03 0.019 -0.305
-0.172 -0.125 -0.117 -0.015 0.009 0.03
-0.019 -0.011 -0.024 -0.048 0.034 -0.039

-0.424 -0.349 -0.302 -0.056 -0.012 -0.333




Fault location with filtered signals
(Threshold-10/100 Q)

—
Actual fault Fault location error (km)

location (km) No filter 1MHz 500 kHz 100kHz  50kHz 10kHz

0.031 -0.016 0.069 -0.004 0.051 2.354
-0.016 -0.044 -0.021 0.015 0.012 -7.37

0.011 0.028 -0.019 -0.019 0.002 -2.04
-0.097 -0.050 -0.045 -0.009 0.035 0.816

0.028 0.035 0.003 0.039 0.133 6.053

-0.008 0.030 0.013 0.012 0.094 -2.886




Fault location errors with cable

connection
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VSC HVYDC scheme with overhead

lines
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VSC HVYDC scheme with overhead

lines
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VSC HVYDC scheme with overhead

lines

0.1
= = = 100 ohm
0.08 T
#
1
~ - I ------
= 0.06 1 1
X
by I 1
o 1 1
W 0.04F 1 1
1 ]
1 1
1
0.02F 1
1 ]
1 1
4'%
0 | 1 1
0 10 20 30 40 50 60 70 80
Threshold

Solid fault 100km the Converter -1



Fault location errors with overhead
line
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Fault location errors with overhead

line
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‘\

» Simulation results indicated that there is an
optimum range of threshold settings.

» Accuracy improved by filtering the signal from
Rogowski coil with a low pass filter with a cut-off
frequency of 50-100 kHz.



» Proposed termination enables success
travelling waves in VSC HVDC schemes.

» Fault location accuracy can be improved by filtering and
selecting a optimum threshold setting.

» Fault location accuracy of +250 m for a 1000 km overhead
line or 300 km long cable in a VSC HVDC system with the
proposed method.
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