DESIGNING AN UNDERWATER EEL-LIKE ROBOT AND DEVELOPING ANGUILLIFORM LOCOMOTION CONTROL

Presented by

B.S. Charitha
P. PRAGNA
Underwater Robotics

Robots underwater!

But why?

- The ocean is highly unexplored
- Oceanographic Institutes
- Alvin/Jason II
Undersea Exploration

Goal: Untethered Mobile Robots Increase Efficiency, Agility and Maneuverability
Legged biomimetic robots

- Northeastern University’s Ambulatory Underwater Robot
- IS Robotics Ariel Robot
Mobile Robots for Inaccessible Environments

- Legless and Wheel-less
- Locomotion by Undulating Waves of the Body That Exploit Forces of Resistance in the Environment
Why an Eel-Like Robot?

The Challenge of Applying Robotic Technology to New Environments

- Underwater Exploration and Surveillance
- Medical Instruments (Endoscopes)
- Manipulators in Confined Spaces
- Mobile Robots in Hazardous Areas
The Eel-Like Robot:

- Underwater, Un-tethered Mobile Robot
- Biomimetic-modeled after the eel and snake
- Hyper-Redundant-composed of a series of repeated links
Biological models of locomotion

- Rectilinear motion
- Serpentine motion
- Concertina motion
- Side winding motion
The Mechanical Changes

- Created Shells to Mimic Body Shape of Eel
- Created Belly Scales to Mimic Snake
- Developed Waterproofing Method
Electrical Changes

- Due to increased number of motors (joint actuators), change from Basic Stamp II mediator, to PIC controller
- Use Futaba S9303 Servomotors (Water-Resistant)
- Use Waterproof AC Adaptor
Waterproofing the Hardware

- Model Generation -1
 - rubber tube covering

- Model Generation -2
 - blue plastic coating and putty

- Model Generation -3
 - epoxy resins and dielectric grease to waterproof
Further Work

- Model has improved modularity (parts are accessible and replaceable) and functionality (better mimics biological models)
- Need to develop better buoyancy
- Need to develop closed loop control using video feedback of position and orientation
Suggestions for performance

- Improve with more homogeneous weight distribution along the length of the body.

- Machining out the center area of the aluminum plates within each link could easily reduce the total mass of the eel.

- The eel structure using alluminium plates should be symmetrical.
Conclusions & Recommendations

- similarity of application of robot on land or in water
- Can move in sinusoidal gaits as in water
- move in a curve rather than a relatively straight path
- have neutral buoyancy and the electrical hardware has been shown to be waterproof
- The battery (power source) is readily accessible for recharging or replacement
References

ANY QUERIES......