LASER WELDING
LASER

- Light Amplification by Stimulated Emission of Radiation

Active Laser Media (the most common for industrial manufacturing)

- Nd:YAG (Rod Laser)
 - Neodymium: Yttrium Aluminum Garnet
- Yb:YAG (Disk Laser)
 - Ytterbium: Yttrium Aluminum Garnet
- CO₂ (Gas Laser)
Principle of LASER

Resonator

Laser Active Medium

End Mirror R=100%

Output Mirror R<100%

Pump Source

Pump Sources:
- High Voltage
- Flashlamp
- Diode

Laser Active Medium:
- Gas
- Rod
- Fiber
- Disk

Wavelength:
- CO₂ 10.6 µm
- Nd:YAG 1.064 µm
- Yb:YAG 1.030 µm
Fiber Optics

Fiber Multiplexer

Resonator

Cavity

Pilotlaser

Fiber Optic Processing Head

Workpiece

Scanning Head

Fiber
Principle of Laser Processing

<table>
<thead>
<tr>
<th>Laser beam</th>
<th>Wavelength (μm)</th>
<th>Power (W)</th>
<th>Irradiance (W/cm²)</th>
<th>Energy (J)</th>
<th>Interaction time/ pulse duration (ms)</th>
<th>Beam quality (mm mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optics</td>
<td>Focussing length/distance to surface</td>
<td>Fiber core diameter</td>
<td>Beam shaping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>Type/mixture/purity</td>
<td>Velocity/distance nozzle - surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Surface</td>
<td>bulk properties</td>
<td>Absorption</td>
<td>material type</td>
<td>Roughness</td>
<td>thickness</td>
</tr>
</tbody>
</table>
Heat conduction welding

Heating of the workpiece for temperatures above the melting temperature without vaporizing, power density from $10^4 - 10^5$ W/cm2

Welding depth depends on heat conduction

Characteristics
- Low welding depth
- Small aspect ratio
- Low coupling efficiency

Applications
Laser welding of thin workpieces like foils, wires, thin tubes, etc.
Deep welding

Heating of the workpiece above the evaporating temperature and creation of a keyhole because of the ablation pressure of the flowing metal vapor, power density of $10^5 - 10^6 \text{ W/cm}^2$

Characteristics
- High welding depth
- Large aspect ratio
- High coupling efficiency

Slide Provided by TRUMPF, www.us.TRUMPF.com
Advantages of laser welding

- **Minimum heat input and high aspect ratio resulting in ...**
 - minimal shrinkage & distortion of the workpiece
 - small heat affected zone
 - narrow weld bead with good appearance

- **High strength welds often resulting in ...**
 - improved component stiffness / fatigue strength
 - reduction of component size / weight
 - continuous weld possible

- **Ability to weld in areas difficult to reach with other techniques**
 - non-contact, narrow access, single sided process

- **Easily automated with accurately located welds**
 - consistent weld penetration / weld geometry / weld quality
 - ability to integrate into existing equipment / production lines
Advantages of laser welding

- **Flexibility ...**
 > beam manipulation (beam switching and sharing)
 > variety of part & weld geometries and materials
 > ease of back-up (especially YAG)

- **Often faster than other techniques ...**
 > high power density weld process
 > high laser uptime (>98%)

- **Cost savings ...**
 > high productivity >> faster cycle time = less stations
 > reduction of scrap and re-work
 > reduction of manual labor
 > reduction of component material and weight
 > can eliminate secondary processes
Laser Welding Aneurysm Clip

(Alternating) Spot welding with scanner optics

Material: Titanium

Laser parameters:
- Average power $P_{av} = 60$ W

Benefit:
- Distortion-free weld connections
- Optimal clip guidance
- Perfect shape and smooth surface
- Best possible biocompatibility

Slide Provided by TRUMPF, www.us.TRUMPF.com
Laser Welding Ophthalmic Device

40um wide weld on 50um thick wires
for ophthalmic device

Material: Stainless Steel
Energy: 50 mJ/pulse
Speed: 8 mm/min

Slide provided by GSI Group, www.gsiglasers.com
Material: Cu
Comments: Special Pulse Form

Slide Provided by LASAG / www.lasag.com
Laser Welding Retrieval Basket

Materials: Stainless + Nitinol
- Ø 650 µm (Stainless jacket)
- Ø 400 µm (Stainless wire)
- Ø 150 µm (Nitinol wire)

Laser pulse parameters:
- \(P_p = 700 \, \text{W at} \, \tau = 4 \, \text{ms} \)

Benefits:
- Low heat input
- High stability of all joints (up to 70 N test pressure)
Vascular Clamps

Material: Stainless Steel
Energy: ~ 2 Joules
Single Pulse

Slide provided by GSI Group, www.gsiglasers.com
Laser Welding
Heat Sinks on Lead Frames

Material: CuFe2P
Parameters: 20Hz, 3 ms, 2 Joules
Spot Size: 300µm (0.011”)
Comments: Special Pulse Form

Slide Provided by LASAG / www.lasag.com
Laser Welding Pacemakers

Material: Titanium Grade 2

Feed Rate: 1.2 m/min (47.2 in./min.)

Comments: Pulse form, modulated, low HAZ

Slide Provided by LASAG / www.lasag.com
Marker Bands- spot welded over lead

Material: Platinum

Energy: ~ 0.5 Joules

Single Spot

Slide provided by GSI Group, www.gsiglasers.com
Laser Welding
Markers on Stents

Material: Nitinol and Tantalum
Pulse Energy: 0.065 Joules
Feed Rate: 100 mm/min (4 in./min.)
Comments: Pulse form, modulated, trailing edge
Laser Welding Endoscope

Two smaller tubes are welded simultaneously on one big tube

Material: Stainless 1.4301

Laser parameters:
- Average power $P_{av} = 120$ W
- Speed 150 mm/min

Benefit:
- Virtually distortion-free welds
- Free motion of the guide wires
Laser Welding Endoscopes

Material: Nitinol and Stainless Steel
Laser Parameters: 20Hz / 2 ms / 1.6 Joules
Spot Size: 400um (0.015“)
Cycle Time: 6 sec.

Slide Provided by LASAG / www.lasag.com
Laser Welding Pacemaker Battery

Material: Stainless Steel

Energy:
- ~0.3 Joule (lid)
- ~0.25 Joule (feed-through)

Speed:
- ~75 in/min (lid)
- ~10 in/min (feed-through)
Laser Welding
Radioactive Prostate Seeds

Material: Titanium

Wall Thickness: 0.04 mm (0.0015“)

Tube Diameter: 0.8 mm (0.0315“)

Comments: Hermetic Sealed

Slide Provided by LASAG / www.lasag.com
Laser Welding
Radioactive Prostate Seeds

Material: Titanium
Wall Thickness: 0.1 mm (0.004“)
Tube Diameter: 0.75 mm (0.0315“)
Comments: Hermetic Sealed
Keys to success

- Design components for laser welding
 (flange widths, gauge thicknesses, single sided access)
- Maximize laser “beam on” time
 (i.e. time sharing of beam to multiple stations)
- Good part fit-up via part tolerances & fixturing
 Butt weld: edge preparation, gap <10% of t_{min}, seam location
 Overlap weld: gap < 10% of t_{min}
- Parts must be clean & dry for optimum results
 (no dirt, rust, grease, heavy oils, sand residue, paint/primer, adhesives, sealers, water, solvent)
- Assign laser welding champion at using plant
 (engineer, attitude/aptitude, teachable, can teach others)
- Early involvement of production personnel
 (ownership, design for service & maintenance)
- Commitment to training & spare parts
 (ownership, design for service & maintenance)
- Partner with suppliers that have proven expertise, longevity & reputation