

# LASER WELDING





### **Laser Fundamentals**

#### **LASER**

 Light Amplification by Stimulated Emission of Radiation

Active Laser Media (the most common for industrial

manufacturing)

- Nd:YAG (Rod Laser)
  - Neodymium: Yttrium Aluminum Garnet
- Yb:YAG (Disk Laser)
  - Ytterbium: Yttrium Aluminum Garnet
- CO<sub>2</sub> (Gas Laser)





# **Principle of LASER**



**Pump Sources: Laser Active Medium:** 

High Voltage Gas

Flashlamp Rod

Diode

Fiber Disk

Wavelength:

 $CO_2$ 10.6 µm

Nd:YAG  $1.064 \mu m$ 

Yb:YAG  $1.030 \mu m$ 





# **Conventional Optics**







# **Principle of Laser Processing**

# Laser **Beam** Gas **Material**

#### Laser beam

Wavelength (µm) Power (W) Irradiance (W/cm²) Energy (J) Interaction time/ pulse du

Interaction time/ pulse duration (ms)
Beam quality (mm mrad)

Beam quality (min i

#### **Optics**

Focussing length/distance to surface Fiber core diameter Beam shaping

#### Gas

Type/mixture/purity Velocity/distance nozzle - surface

# Material Surface bulk properties Absorption material type Roughness thickness Temperature heat conduction Dirt heat capacity Melt property microstructure -tension -chem. reactions







# **Principles of Laser Welding**

#### **Heat conduction welding**

Heating of the workpiece for temperatures above the melting temperature without vaporizing, power density from 10<sup>4</sup> - 10<sup>5</sup> W/cm<sup>2</sup>

Welding depth depends on heat conduction

#### **Characteristics**

- Low welding depth
- Small aspect ratio
- Low coupling efficiency

#### **Applications**

Laser welding of thin workpieces like foils, wires, thin tubes, etc.







### Principle of laser processing

#### **Deep welding**

Heating of the workpiece above the evaporating temperature and creation of a keyhole because of the ablation pressure of the flowing metal vapor, power density of 10<sup>5</sup> - 10<sup>6</sup> W/cm<sup>2</sup>

#### **Characteristics**

- High welding depth
- Large aspect ratio
- High coupling efficiency





### Advantages of laser welding

- Minimum heat input and high aspect ratio resulting in ...
  - > minimal shrinkage & distortion of the workpiece
  - > small heat affected zone
  - > narrow weld bead with good appearance
- High strength welds often resulting in ...
  - > improved component stiffness / fatigue strength
  - > reduction of component size / weight
  - > continuous weld possible
- Ability to weld in areas difficult to reach with other techniques
  - > non-contact, narrow access, single sided process
- Easily automated with accurately located welds
  - > consistent weld penetration / weld geometry / weld quality
  - > ability to integrate into existing equipment / production lines





# Advantages of laser welding

#### Flexibility ...

- > beam manipulation (beam switching and sharing)
- > variety of part & weld geometries and materials
- > ease of back-up (especially YAG)

#### Often faster than other techniques ...

- > high power density weld process
- > high laser uptime (>98%)

#### Cost savings ...

- > high productivity >> faster cycle time = less stations
- > reduction of scrap and re-work
- > reduction of manual labor
- > reduction of component material and weight
- > can eliminate secondary processes





# **Laser Welding Aneurysm Clip**

(Alternating) Spot welding with scanner optics

**Material:** Titanium

#### **Laser parameters:**

• Average power  $P_{av} = 60 \text{ W}$ 

#### **Benefit:**

- Distortion-free weld connections
- Optimal clip guidance
- Perfect shape and smooth surface
- Best possible biocompatibility







# **Laser Welding Ophthalmic Device**

40um wide weld on 50um thick wires

for ophthalmic device

Material: Stainless Steel

Energy: 50 mJ/pulse

Speed: 8 mm/min







# Laser Welding IT Plugs



Material: Cu

**Comments**: Special Pulse Form







### **Laser Welding Retrieval Basket**

#### **Materials:** Stainless + Nitinol

- Ø 650 μm (Stainless jacket)
- Ø 400 µm (Stainless wire)
- Ø 150 µm (Nitinol wire)

#### **Laser pulse parameters:**

•  $P_P = 700 \text{ W at } \tau = 4 \text{ ms}$ 

#### **Benefits:**

- Low heat input
- High stability of all joints (up to 70 N test pressure)







### **Vascular Clamps**

Material: Stainless Steel

**Energy:** ~ 2 Joules

Single Pulse







# Laser Welding Heat Sinks on Lead Frames



Material: CuFe2P

Parameters: 20Hz, 3 ms, 2 Joules

**Spot Size:** 300µm (0.011")

Comments: Special Pulse Form







# **Laser Welding Pacemakers**





Material: Titanium Grade 2

Feed Rate: 1.2 m/min (47.2 in./min.)

Comments: Pulse form, modulated, low HAZ





# Marker Bands- spot welded over lead

Material: Platinum

**Energy:** ~ 0.5 Joules

Single Spot







# Laser Welding Markers on Stents

**Material:** Nitinol and Tantalum **Pulse Energy:** 0.065 Joules

Feed Rate: 100 mm/min (4 in./min.)

Comments: Pulse form, modulated, trailing edge







### **Laser Welding Endoscope**

Two smaller tubes are welded simultaneously on one big tube

**Material:** Stainless 1.4301

#### **Laser parameters:**

- Average power  $P_{av} = 120 \text{ W}$
- Speed 150 mm/min

#### **Benefit:**

- Virtually distortion-free welds
- Free motion of the guide wires







# **Laser Welding Endoscopes**





Material: Nitinol and Stainless Steel

Laser Parameters: 20Hz / 2 ms / 1.6 Joules

**Spot Size:** 400um (0.015")

Cycle Time: 6 sec.





# **Laser Welding Pacemaker Battery**

Glass-to-Metal Feed-Through Weld

**Material:** Stainless Steel **Energy:** ~ 0.3 Joule (lid)

~ 0.25 Joule (feed-through)

Speed: ~ 75 in/min (lid)

~ 10 in/min (feed-through)



Lid Weld





# Laser Welding Radioactive Prostate Seeds



decay 50 days)

Material: Titanium

**Wall Thickness:** 0.04 mm (0.0015") **Tube Diameter:** 0.8 mm (0.0315")

**Comments**: Hermetic Sealed



Society of

**Engineers** 

Manufacturing



# **Laser Welding Radioactive Prostate Seeds**



Material: Titanium

Wall Thickness: 0.1 mm (0.004") Tube Diameter: 0.75 mm (0.0315")

Comments: Hermetic Sealed





### Keys to success

- Design components for laser welding (flange widths, gauge thicknesses, single sided access)
- Maximize laser "beam on" time

   (i.e. time sharing of beam to multiple stations)
- Good part fit-up via part tolerances & fixturing
   Butt weld: edge preparation, gap <10% of t<sub>min</sub>, seam location
   Overlap weld: gap < 10% of t<sub>min</sub>
- Parts must be clean & dry for optimum results
   (no dirt, rust, grease, heavy oils, sand residue, paint/primer, adhesives, sealers, water, solvent)
- Assign laser welding champion at using plant (engineer, attitude/aptitude, teachable, can teach others)
- Early involvement of production personnel (ownership, design for service & maintenance)
- Commitment to training & spare parts
   (ownership, design for service & maintenance)
- Partner with suppliers that have proven expertise, longevity & reputation

