INTERNET OF THINGS (IoT)

PRESENTED BY:
Wafaa Rizin Ameer
INTRODUCTION

- IoT: All about physical items talking to each other
- The term coined by Kevin Ashton in 1999
- Composed by two words and concepts:
 - “Internet”: “The worldwide network of interconnected computer networks, based on a standard communication protocol, the Internet suite (TCP/IP)”
 - “Thing”: “an object not precisely identifiable”
- “Internet of Things” means “a worldwide network of interconnected objects uniquely addressable, based on standard communication protocols”.
More than RFID!

I'm here, Mummy N 51.30.24 W 0.08.19

Blood pressure too high

Accident ahead

You lost me here

Ground needs water
INTRODUCTION

- Any object will have a unique way of identification in the coming future.
- The capacity of addressing each other and verifying their identities
- Objects will be able to exchange information
- Object knows its common properties such as creation, recycling, transformation, ownership change, or use for different purposes
INTRODUCTION

• Current Internet is a collection of uniform devices
• IoT will exhibit a much higher level of heterogeneity
 – objects of totally different in terms of functionality, technology and application fields can communicate
WHAT IS THE IoT?

- A new dimension added to world of information and communication technologies (ICTs):
 - Anytime connectivity
 - Any place connectivity
 - For anyone
 - Connectivity for anything
Any TIME connection

- On the move
- Outdoors and indoors
 - Night
 - Daytime

Any PLACE connection

- On the move
- Outdoors
- Indoors (away from the PC)
- At the PC

Any THING connection

- Between PCs
- Human to Human (H2H), not using a PC
- Human to Thing (H2T), using generic equipment
- Thing to Thing (T2T)
WHAT IS THE IoT?

• Connections will multiply and create an entirely new dynamic network of networks
TECHNOLOGY

• Depends on dynamic technical innovation like wireless sensors
• Four kinds of technology basically used.
 – RFID (Radio-frequency identification)
 – Sensor technologies
 – Embedded intelligence
 – Nanotechnology
TECHNOLOGY

• RFID
 – Item identification
 – Uses radio waves to identify items
 – Gives information about their location and status

• Sensor technologies
 – Data collection
 – For example, sensors in an electronic jacket collect changes in external temperature and parameters of jacket adjusted accordingly
TECHNOLOGY

• Embedded intelligence
 – Information processing
 – Distribute processing power to the edges of network
 – Empower things and devices independent decisions

• Nanotechnology
 – Miniaturization
WIDER TECHNOLOGICAL TRENDS

• For the years to come, four distinct macrotrends that will shape the future of IT
 - “exaflood” or “data deluge”: explosion of the amount of data collected and exchanged
 - The energy required to operate the intelligent devices will dramatically decrease
 - Miniaturisation of devices
 - Autonomic resources
PROBLEMS AND CONCERNS

• Technological standardization
 – Standardization is essential for mass deployment and diffusion of any technology

• Protection of data and privacy
 – Sensors and smart tags can track users’ movements, habits and ongoing preferences
ARCHITECTURE

- There can be more than one architecture for Internet of Things
- The one explained here is standardised open architecture: the EPCglobal Network
 - widely accepted and has gained the biggest support from IT companies
ARCHITECTURE

- Includes content providers (producers) and content users (consumers) that utilise the Internet of Things and share benefits.
- New services and business innovation will be enabled by an enhanced Internet of Things infrastructure.
- Companies, public institutions and people will access data for their own benefits and financial as well as nonfinancial benefit.
ARCHITECTURE

• Key goals for Internet of Things architecture to achieve are:
 _ An open, scalable, flexible and secure infrastructure
 _ A usercentric, customisable ‘Web of Things’
 • Interaction possibilities for the benefit of society
 _ New dynamic business concepts
 • flexible billing and incentive
 _ Capabilities to promote information sharing
ARCHITECTURE

• Includes the following components:

 – *Extended static data support*: There is a need to support all things that carry a unique ID

 – *Integration of dynamic data*: A need to sense environmental conditions as well as the status of devices
ARCHITECTURE

• *Support for nonIP devices*: NonIP devices offer only limited capability.
 - Can be integrated in IoT through gateways

• *Integration of an actuator interface*: Actuators execute decisions either rendered by humans or software agents on their behalf
ARCHITECTURE

• Optional integration of software agents: For automated decision making
• Data synchronisation for offline support
APPLICATIONS
Pallet Communicates with Gate

Logistics:
- Speed up process
- Minimize errors

Classical RFID application
Clothes Communicate with Display

Value for end consumers! (RFID)

- Virtual shop assistant
- Context recognition

→ value for end consumers!
Packaged Food Communicates with Microwave Oven
Cooperating Smart Everyday Things?

When the tooth brush talks to the bathroom mirror
Real-World Awareness

Intuitive way of interaction
- access content and services by touching objects
- NFC (Near Field Communication)

Power [7 days]: 5.4 kWh
CO₂: 3.1 kg; Cost: 1.25 $
Use Case: Locating Lost Objects

- Locate lost or misplaced personal items
 - wallets, keys, sports bags,...

- Opportunistic use of mobile phones and their infrastructure
Allergy Checker

Barcode ETH Allergy Check

Options Back

Barcode ETH Allergy Check

Options Back
Communicating Products

- Weapon or credit card that only works in the hand of its owner
FUTURE

• Standardization
• Technologies necessary expected to enter the stage of practical use
• Used in monitoring buildings, environmental monitoring, home automation, personalization, localisation, positioning
CONCLUSION

• The Internet of Things is a movement towards using realtime data to become more intelligent in the decisions we make
• Our physical things will become connected in our virtual world
• But it may arise privacy concerns
QUESTIONS???

Any questions?

May I have a copy of your presentation?
Show is over
YOU MAY NOW RELAX!