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Nonlinear behavior of an ultrasonic transducer 
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Abstract 

A transducer model, based on nonlinear piezoelectric constitutive equations, has been developed to describe the harmonic 
generation that occurs on current or velocity signal analysis when the transducer is driven at high voltage. The symmetrical 
Langevin transducer studied close to its resonance frequency is composed of Navy III type power ceramics. The nonlinearities 
create an energy spread over the frequency spectrum and consequently result in an amplitude saturation effect at the driving 
frequency, which can be interpreted in terms of the loss mechanism. Experiments have been carried out to measure the nonlinear 
losses and the harmonic amplitude evolutions. Results are given and discussed. Eventually, by experimental means, identification 
of the influential nonlinear coefficients permits comparison between theoretical predictions and experimental results. 

Keywords: Nonlinearities; Transducers; PZT 

1. Introduction 

For power transducers driven at high electrical levels, 
the nonlinear domain for piezoelectric ceramics is rapidly 
reached. Then, instantly, instabilities appear and the 
performances of the system are strongly limited by the 
nonlinearities [ l-41. 

The first - experimental - part of this paper presents 
different observations made on a Langevin transducer. 
Besides the resonance frequency shift and the hysteresis 
phenomenon often described [ 51, nonlinearities create 
current and power signal distortions and an energy 
spread resulting in an amplitude saturation effect. 

To describe the transducer nonlinear behavior, a model, 
based on piezoelectric constitutive equations extended 
up to the second order, has been proposed [6,7]. This 
model leads to the resonance curve of the transducer for 
different driving amplitudes and the quantification of 
the frequency hysteresis phenomenon. 

2. Resonator structure and measurement method 

The ceramic behavior under heavy duty working 
conditions has been studied with a prestressed Langevin 
structure driven at its resonance frequency. 

* Corresponding author. Fax: + 33-72-43-85-13 

A small symmetrical transducer, using Navy III type 
power ceramics, P189 from Quartz & Silice (St Gobain), 
has been built. It consists of two tail masses in brass, 
four ceramic rings, four electrodes and a prestress screw; 
its resonance frequency, under 40 MPa prestress, is 
around 27 kHz. 

Moreover, a thin stress sensor, composed of two disks 
of P189, can be inserted at the center of the piezostack 
to monitor the stress level. 

A network analyser (HP 3577A), connected to a 
power amplifier, drives the transducer and allows us 
to obtain its admittance curve (see Fig. 1). Moreover 
it permits us to correct the resonance frequency 
fluctuations. 
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Fig. 1. Experimental set- up. 
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The tail mass displacement is measured by laser 
vibrometry, and a spectrum analyser (HP35665A) gives 
the signal spectrum. The transducer radiates in air, 
consequently the coupling with the fluid is minimal. 

3. Experimentation 

The resonance frequency shift and the hysteresis 
phenomenon that occur when the transducer excitation 
level is increased are characteristic of a nonlinear 
behavior (see Fig. 2). A more detailed explanation of 
these phenomena will be given in the next section, where 
a piezoelectric nonlinear model of the transducer is 
proposed. 

When the transducer is driven at a high voltage level, 
a distinct distortion appears on current, velocity, stress 
or electrical power signals. Figs. 3, 4 and 5 display these 
observations. The Fourier transforms of these signals 
exhibit a spectrum splitting over a fundamental fre- 
quency, which corresponds to the external driving 
frequency, and its overtones (see Figs. 6 and 7). The 
amplitudes of these harmonics increase with the source 
level. This results in an amplitude saturation of the 
fundamental frequency. Figs. 8 and 9 present the evolution 
of the fundamental, first and second harmonic of the 
current for different prestresses; it can be noticed that 
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Fig. 2. Hysteresis phenomenon (current curve of the transducer for 
decreasing frequencies). 
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Fig. 3. Voltage and current signals (transducer 400 bars P189 65 VWak). 

Fig. 4. Stress and velocity signals (transducer 400 bars Pi89 65 V,,,). 

Fig. 5. Electrical power signal (transducer P189 400 bars 65 V&. 

Fig. 6. Current spectra for different excitation levels 35 Vpear and 
7.5 Vpcak (P189 400 bars). 

differences lower than 10 dB between the fundamental 
and the first harmonic amplitudes are rapidly obtained 
by increasing the driving voltage. 
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Fig. 7. Spectral distribution of the electrical power (transducer P189 
400 bars 65 V,,,). 
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Fig. 8. Evolution of the fundamental, first and second harmonic of 
the current (in dB) (transducer P189 prestress: 200 bars). 
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Fig. 9. Evolution of the fundamental, first and second harmonic of 
the current (in dB) (transducer P189 prestress: 400 bars). 

4. Theoretical approach 

In the low frequency regime, the transducer can be 
described as a lumped system. Each tail mass, assumed 
rigid, is shaken by two ceramic rings. Consider M as 
the mass of each tail mass, Z the ceramic surface, 1 the 
half length of the ceramic stack, u the tail mass displace- 

ment and T the stress, it can then be written: 

Mu” = - TC (1) 

where the primes specify time differentiations. 
The stress T is given by the piezoelectric constitutive 

equations extended to the nonlinear domain: 

T=cS+eE+u,S2+ySE (2) 

where S is the strain (S z u/l), E the electrical field, 
c and e the conventional linear piezoelectric coefficients, 
and ~1~ and y are the nonlinear ones. 

The experimental observations must be taken into 
account to proceed further. Indeed, the current or velocity 
spectra display discrete harmonics, so we seek a solution 
of the form: 

u(t) = c c, ejnnt (3) 
n=-‘X 

with Q the driving pulsation. 
Substituting Eqs. (2) and (3) in Eq. (1) and adding 

the frictional force, whose damping coefficient is A, the 
following equation is obtained: 

lI=+OZ n=+m 
-a2 C n2Cn ejnnt + w2 C C, ejnRt 

II= -cc It= -02 
n=+m m=+cc 

+a c c CIICmd(n+m)Qf 
n=-_m mEpcc 

“= +m - eCE, 
+ 2AwjQ 2 nC, ejnRt = ___ 

PI= -m 
2M (d*t +e-jnt) (4) 

where w is the pulsation associated with the natural 
resonance frequency of the linear system and 
CI = ccJ/(12M). 

From this equation, equalities can be written for each 
frequency; their resolution gives the fundamental or 
harmonic amplitude evolution for the displacement u. 
According to previous experiments, a 10% nonlinearity, 
for strain close to 10m3, has been introduced on the 
stress function. 

The resolution of Eq. (4) leads to a third degree 
equation in IC,l. 

To help understanding, it is useful to consider the 
undamped system (A= 0). The solutions obtained for 
the fundamental amplitude 1 C, 1 consist of two branches 
of a parabola meeting at infinity. When the excitation 
E, is low, these two branches are symmetrical and 
centered on the linear resonance pulsation w, whereas 
when the excitation level is increased the parabola 
branches bend to left (see Fig. 10). 

If damping is introduced, the solutions do not increase 
indefinitely and an amplitude maximum is reached: this 
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Fig. 10. Simulation of the undamped system. 
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Fig. 11. Simulation of the damped system. 

corresponds to the resonance amplitude (see Fig. 11) 

D-691. 
When the electrical excitation is small, the funda- 

mental amplitude solution is represented by a sym- 
metrical curve whose maximum is located at w, the 
natural resonance of the system; the equation solved has 
one real root over the limited full frequency range. 

If the excitation is increased, the curve changes and 
presents three real roots over a frequency domain that 
corresponds to an unstable area. Indeed, when the 
driving frequency increases, the amplitude lC, 1 reaches 
the point ‘A’ then jumps to point ‘IS’, therefore creating 

x 10” Displacement amplitude m(mk) 

Frequencies Hz 

1 
2.8 

x10’ 

a = 1.38e15 7 = 5e4 h = 0.002 U=7OVpeak 

Fig. 12. Jump phenomenon description. 

a discontinuity, whereas when the driving frequency 
decreases, the amplitude gets to point ‘C’ before jumping 
to point ‘D’ (see Fig. 12). 

The system never gets into the part ‘AC’ of the curve 
since this corresponds to unstable oscillations. The 
hysteresis phenomenon and the associated instability 
appear. 

It is interesting to note in experiments that, if the 
transducer is directly driven at a frequency located in 
the unstable area, the system will always run on the low 
amplitude branch ‘AD’ of the curve since, on this branch, 
the energy is minimal. 

The influence of the two main nonlinear coefficients 
introduced (a and y) has been tested. The nonlinear 
parameter y, affecting the crossed term ‘SE’, has a major 
effect on the amplitude of the solution lC,( (see Fig. 13), 
while the nonlinear coefficient LX, affecting the term S2, 
tends to accentuate the hysteresis phenomenon (see 
Fig. 14): it modifies the locations of the increasing and 
decreasing resonant frequencies. 

5. Conclusions 

Nonlinear piezoelectric constitutive equations lead to 
a comprehensive interpretation of the experimental 
observed amplitude saturation and frequency hysteresis 
effects. 

The nonlinear coefficients’ influence on the resonance 
curve has been studied and it shows their relative 
importance: the term in S2 mainly changes the folding 
of the resonance curve, whereas the term in SE mainly 
reduces the resonant amplitude. 

The displacement amplitude saturation with the electric 
driving field is commonly interpreted in terms of a 
viscous factor increase with the input voltage. In this 
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Fig. 13. Influence of the nonlinear parameter y. 

J .y : u=2e15 I 

1’ 
J 

.5 2.66 2.6 2.66 2.7 2.75 2.6 
Frequencies Hz 

x10’ 

h=O.O02 y=5c4 u=7ovpcak 

Fig. 14. Influence of the nonlinear parameter a. 

paper, an alternative explanation, invoking the nonlinear 
term SE, is given. A dissipated power analysis will be 
performed to associate or distinguish between these two 
possible interpretations. 
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