BARREL SHIFTER

A miniproject report
submitted in partial fulfillment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

IN
ELECTRONICS & COMMUNICATION ENGINEERING

Submitted by
P. Sumanth Kumar (08R01A04B2)
P. Kishore Kumar (08R01A04B3)
Y. Anji Reddy (08R01A04C7)

Under The Esteemed Guidance Of

Asst. Professor N.V. Rama Krishna.

Ll o

& A%
- \s =]
e
IR
GROUP OF INSTITUTIONS
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
CMR INSTITUTE OF TECHNOLOGY

(AFFILIATED TO JAWAHERLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD)
(AN ISO 9001:2000 CERTIFIED ISTITUTION)

KANDLAKOYA, MEDCHAL ROAD, HYDERABAD - 501401.
2011 -2012

CERTIFICATE

e
WIR
GROUP OF INSTITUTIONS

CMR INSTITUTE OF TECHNOLOGY

This is to certify that the miniproject work entitled
“BARREL SHIFTER”
is a bonafide work carried out by the student in partial fulfillment of
the requirements for the degree of BACHELOR OF TECHNOLOGY in

ELECTRONICS & COMMUNICATION ENGINEERING
During the academic year 2011-2012.

P. Sumanth Kumar (08R01A04B2)
P. Kishore Kumar (08R01A04B3)
(08R0O1A04C7)

Y. Anji Reddy

(Prof. A. Balaji Nehru)

(N.V. Rama Krishna)
Head of the department

Asst. Professor
Electronics & Communication Engineering

Internal guide

External examiner

DECLARATION

We hereby declare that the results embodied in this Dissertation entitled “BARREL SHIFTER” is

carried out by us for the partial fulfillment of the project requirements for the award of degree.

We have not submitted to any other University /Institute for the award of any degree.

P. Sumanth Kumar (08R01A04B2)
P. Kishore Kumar (08R01A04B3)
Y. Anji Reddy (08RO1A04C7)

CERTIFICATE

WRE g

&>
CINIR

GROUP OF INSTITUTIONS

'IE-D,F’
®
P

This is to certify that the Dissertation entitled "BARREL SHIFTER" is a bonafide work done
by Y. Anji Reddy(Roll No: 08R01A04C7), P. Sumanth Kumar (Roll No: 08R01A04B2), P.
Kishore Kumar(RolINo:08R01A04B3) final year students of B.Tech (ECE), in partial fulfillment of
the requirements for the award of the degree of Bachelor Of Technology in Electronics &
Communication Engineering, submitted to the Department of Electronics and Communication
Engineering, CMR INSTITUTE OF TECHNOLOGY, Hyderabad. The Project work has been carried
out at CMR INSTITUTE OF TECHNOLOGY, Hyderabad under my supervision and guidance.

DATE: SIGNATURE
(Head of the department)

External Examiner

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion of any task would be
incomplete without a mention of the people, who made it possible and whose guidance and
encouragement crown all the efforts with success. 1 would like to take this opportunity to
express my deep sense of gratitude and extend my best wishes to all the people who have
guided inspired and motivated me during this project and given me immense pleasure to
acknowledge their cooperation.

I offer my sincere thanks to Mr. N.V. Rama Krishna project guide for readily
responding to the request to do the project at CMR INSTITUTE OF TECHNOLOGY,
Hyderabad. I highly indebted to him, who was not only shown atmost patience, but fertile in
suggestions vigilant in the directions of error and who has infinitley helpful.

I express my deep sense of gratitude to Asso. Prof. N.V.Rama Krishna , project
internal guide for her help, through provoking discussions invigorating suggestions extended
to me with immense care zeal throughout the work. I am also thankful for her interminable
help in overcoming all hurdles in flow of my project.

I am thankful to Prof. A. BALAJI NEHRU, Head of the department ECE for his
constant source of encouragement and inspiration for me to strive hard and give my best to
anything undertaken.

No small amount of gratitude would be sufficient to Dr. M. JANGA REDDY,

principal, CMR institute of technology, for his kind encouragement.

P. Sumanth Kumar (08R01A04B2)
P. Kishore Kumar (08R01A04B3)
Y. Anji Reddy (08R0O1A04C7)

CHAPTER 1I:

LIST OF CONTENTS

TOPICS

INTRODUCTION

CHAPTER 2: FUNCTION OF BARREL SHIFTER

CHAPTER 3:

2.1
2.2
23
24
2.5
2.6
2.7

Architecture
Gate type
Right rotate
Left rotate
Right shift
Left shift
Applications

AN INTRODUCTION TO XLIX 9.1i

3.1
3.2
33
3.4
3.5
3.6

Getting started

Create a new project

Create an HDL source

Design simulation

Simulating design functionality

Create timing constraints

3.6.1 Entering timing constraints
3.6.2 Implement design and verify constraints

3.6.3 Download design to the spartan 3E-kit

PAGE NO.

\]MLII-PLU)N

11
13
15
21
24
25
26
27
30

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

CHAPTER 9:

INTRODUCTION TO FPGA

4.1 Introduction

4.2 Input/output blocks

4.3 Configurable logic block(CLB) and slice resources

4.4 Interconnect

4.5 Overview

INTRODUCTION TO SPARTAN 3E- Kit
5.1 Introduction

5.2 Board power

5.3 Configuration

5.4 Oscillators

5.5 User input

5.6 PS/2 Port

5.7 Dumping Procedure and programming through JTAG

RESULTS

CONCLUSION

FUTURE SCOPE

REFERENCES

31
34
37
44
44

45
46
47
48
48
49
49

52

58

58

58

S.no

—

° ®» N n kWD

[\ T NG T N T NG T N T N T N S S e e e S
S Lk WD = o 0 X N Nk W N = O

LIST OF FIGURES

Fig. Name

Structure of an array shifter

Structure of a log shifter

ISE Help topics

New project wizard and help topics
Define module

New project ISE

Initial timings

Behavioral simulation section
Simulation result

Prompt to add UCF file to project
Post implementation design

Package pin location

iIMPACT welcome dialog box
Boundary scan

Simplified IOB diagram

CLB array location

Amplified diagram of the left hand SLICEM
Arrangement of slices within the CLB
Resources in CLB

Resources in slices

Four types of interconnect tiles
Basys programming circuit locations
Standard USB type A/ type B cable
To invoke iMPACT procedure
Assigning a configuration file to FPGA
iIMPACT for startup clock CCLK

Page. No

12
14
16
17
22
24
25
26
27
29
31
32
36
38
40
41
41
42
44
46
49
50
51
51

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Window to program Spartan3E FPGA
Simulation result for left shift
Simulation result for right shift
Simulation result for circular left shift
Simulation result for circular right shift
Block diagram of barrel shifter
Register transfer logic for barrel shifter
Technology schematic

Design summary for barrel shifter

Pin assignment for barrel shifter

52
53
54
54
55
55
56
56
57
57

CHAPTER — 1
INTRODUCTION

1.1 Introduction

A barrel shifter is a digital circuit that can shift a data word by a specified number of bits. It can
be implemented as a sequence of multiplexers. In this implementation, the output of one MUX is
connected to the input of the next MUX in a way that depends on the shift distance. The number of
multiplexers required is n*log,(n), for an n bit word. Four common word sizes and the number of

multiplexers needed are listed below:

o 64-bit— 64 * logy(64) = 64 * 6 = 384
o 32-bit— 32 * logx(32) =32 * 5= 160
e 16-bit— 16 * logx(16) = 16 * 4 = 64
o 8bit— 8%*logx8)=8*3=24

Basically, a barrel shifter works to shift data by incremental stages which avoids extra clocks to
the register and reduces the time spent shifting or rotating data (the specified number of bits are
moved/shifted/rotated the desired number of bit positions in a single clock cycle). A barrel shifter is
commonly used in computer-intensive applications, such as Digital Signal Processing (DSP), and is

useful for most applications that shift data left or right - a normal style for C programming code.

Rotation (right) is similar to shifting in that it moves bits to the left. With rotation, however,
bits which "fall off" the left side get tacked back on the right side as lower order bits, while in shifting

the empty space in the lower order bits after shifting is filled with zeros.

Data shifting is required in many key computer operations from address decoding to computer
arithmetic. Full barrel shifters are often on the critical path, which has led most research to be
directed toward speed optimizations. With the advent of mobile computing, power has become as
important as speed for circuit designs. In this project we present a range of 32-bit barrel shifters that

vary at the gate, architecture, and environment levels.

CHAPTER — 2
FUNCTION OF BARREL SHIFTER

Each shifter will be designed as a 16-bit shifter that receives a 16-bit input data value along
with a two’s compliment encoded shift value, and will produce a 16- bit shifted result. This section

will describe the internal design characteristics for each shifter.

2.1 Architecture

There are two common architectural layouts for shifts, array shifter and logarithmic shifters.
An array shifter(Fig. 1) decodes the shift value into individual shift bit lines that mesh across all input
data values. At each crossing point, a gate will either allow or not allow the input data value to pass
to the output line, controlled by a shift bit line. The advantage of this design is that there is only ever
one gate between the input data lines and the output data lines, so it is fast. The disadvantages of this
design are the requirement for a decoder, and the fact that each input data line sees a load from every

shift bit line.

5 Bit Shift

e |
ik

Japosa(
(1¢0)ereq nduj

S
"
[]
i
[]

Quput Data(0..31)

Fig. 1: Structure of an array shifter.

In a logarithmic shifter(Fig. 2), the shifter is divided into loga(n) stages, where n is the input
data length. Each bit of the encoded shift value is sent to a different stage of the shifter. Each stage
handles a single, powerof- two shift. The input data will be shifted or not shifted by each of the stages
in sequence. Five stages would be required when considering 32 bit data. The advantage of a log
shifter is that it has small area and does not require a decoder, but the disadvantage is that there are

five levels of gates separating the input data from the output data.

2.2 Gate Type

There are two types of gates that are required for these shifters: the array shifter requires
switches that will either propagate or not propagate an input data bit, and the log shifter requires 2-to-

1 muxes to propagate either a shifted or a non-shifted bit.

Input Daf:__t:a.(ﬁ. 31)
L 4

] Bit Shaft

2

2 Bit Shaft

&

4 Bit Shift

S
/L

5 bit encoded shift amount

~~~~~ |

16 Bit Shift

Ollplll', Data(0..3 1) In this project

Fig. 2: Structure of a log shifter. : .
= we will consider two
types of CMOS switches: (1) ntype pass transistor switch; and (2) a full transmission gate switch; and

we will consider four types of mux designs: (1) n-type pass transistor mux; (2) full transmission mux;



(3) a static CMOS mux; and (4) a dynamic logic mux. The pass transistor and transmission gates are
simple and fast, but will require occasional buffering to strengthen the signals in the log shifters. The
static and dynamic gates are self buffering so no additional buffers are needed, but contain more
transistors. The dynamic gate design is the only type that requires a clock signal for a precharge

stage. Figure 3 shows schematics for each gate design.

2.3 Right Rotation

Right rotation is similar to right shifting, except that additional hardware is required to
determine which values get shifted into the upper bits of the output. We consider three options: (1) a
wrap around least significant bit for right rotation; (2) a sign bit for arithmetic right shifting; and (3)
GND for signed magnitude right shifting. A 3-to-1 control mux was added to each wrap around bit

line. This mux allows either the rotation wrap-around bit, the sign bit, or GND to be selected.

2.4 Left Rotation

Left rotations can be accomplished by rotating right 32 - Rotatereft bits. Rotate,i,ht can be
calculated by taking the two's-compliment of the Rotateleft value, which requires inverting all the
Rotateleft bits and adding one. The inversion of the Rotateleft bits can be accomplished by adding
muxes that pass either the shift bit or its inverse. The addition of one to Rotateleft can be
accomplished in two ways: (1) include a 5 bit incrementor; or (2) add an additional one-bit shift

stage.

2.5 Left Shifting

Left shifting can be performed by right shifting 16 — Shift left bits, and including an additional
row of pull down gates that mask out the lower n bits of the » bit left shift. A second method is to
initially reverse the input data bits and perform a right shift of length Shiftleft, and finally reverse the
output bits.



2.6 Applications

e Digital Signal Processing
e Array Processing

e QGraphics

e Database Addressing

e High Speed Arithmetic Processors

Role of barrel shifter in DSP

In digital signal processing (DSP) chips used in processors, a very large number of
mathematical operations, including multiplications and additions, need to be performed at high speed.

To accomplish this, high speed data path components are required on the DSP chip.

A DSP chip that performs arithmetic operations is a math processor. This processor is coupled
to a system bus to receive and send data over the bus to other components in the computer system.
An ALU (Arithmetic Logic Unit) is one of the main components that performs arithmetic operations
in the math processor within the DSP chip. In order to improve the performance of the ALU, data is
often manipulated prior to its introduction into the ALU. For example, from the system bus, incoming
data can be normalized by a right shifter that scales down the magnitude of the number represented
by the incoming data to make the number more manageable for later operations performed by the
ALU. The ALU will then perform the required operation, such as addition, logical AND/OR and EX-
OR functions, on the shifted data.

The result of the ALU operation is provided to a left shift device which shifts the ALU result
to the left. This has the effect of scaling the number by a proper amount to restore normalization. The

re-normalized result of the ALU operation is then placed on the system bus.

One type of shifter used in digital signal processing applications is a barrel shifter that will
shift a plurality of bits in a single clock cycle. Barrel shifters are particularly advantageous in high
performance applications in comparison to serial shifters which would require N clock cycles to shift
a number by N bits. A barrel shifter forms a high-speed data path component that is very useful in

high-performance applications.



A design goal of a DSP chip designer is to provide the requisite high performance while
reducing its power consumption. Power consumption is problematical in barrel shifters since data
passes through the barrel shifter even when the barrel shifter is not being used to shift the data, as is
often the case. In addition to a loss of power, sending data which will not be shifted through the

barrel shifter produces added delay.

There is a need for a low-power, high-performance barrel shifter that will shift a plurality of
bits in one clock cycle when desired, but will also pass data through the barrel shifter without delay

or loss of power when the data is not to be shifted.

This and other needs are met by the present invention which provides an arrangement for
performing arithmetic operations in a processor. This arrangement includes an arithmetic logic unit
and a barrel shifter. The arithmetic logic unit (ALU) performs arithmetic operations on data provided
as input to the ALU. The ALU has an input for receiving the data and an ALU output at which M-bit
results of the arithmetic operations on the data are produced. The barrel shifter includes a barrel
shifter input connected to the ALU output, and a shift circuit connected to the barrel shifter input. The
shift circuit selectively shifts the M-bit results and produces shifted M-bit results at a shift circuit
output.

A barrel shifter output is coupled to the shift circuit output. Shifted M-bit results are produced
at the barrel shifter output when the shift circuit is selected to shift the M-bit results.

Unshifted M-bit results are produced at the barrel shifter output when the shift circuit is
selected not to shift the M-bit results. The barrel shifter input includes an isolation circuit that isolates

the shift circuit from the ALU output when the shift circuit is selected not to shift the M-bit results.

The isolation circuit of the present invention reduces the consumption of power since the shift
circuit is isolated when no shifting is required. The highly capacitive nodes in the shift circuit are

therefore not switched when the shift circuit is not used to shift the results from the ALU.

In certain preferred embodiments of the invention, the barrel shifter input includes tristate
buffers that receive as input the M-bit results from the ALU. The outputs of the tristate buffers are
connected to the input of the shift circuit. When the tristate buffers are enabled, and a shift by the



shift circuit is desired, the tristate buffers pass the M-bit results to be shifted into the shift circuit.
When the M-bit results are not to be shifted, however, a signal causes the tristate buffers' outputs to
float. This effectively isolates the shift circuit from the ALU output when the shift circuit is not to
shift the M-bit results. Power consumption by the shift circuit is reduced since the internal signal
nodes with high capacitance are prevented from being switched due to the floated outputs of the

tristate buffers.

An especially low-power embodiment of the present invention provides an isolation circuit
that includes an input multiplexer that has a plurality of tristate buffers. A first one of these tristate
buffers has an input coupled to receive all M-bits of the M-bit results from the ALU output, and an
output at which the M-bits of the M-bit results are produced as a function of the shift control signal,
this output being coupled to the shift circuit.

The input multiplexer also has a second tristate buffer having an input coupled to receive the
(M-P) most significant bits of the M-bit results, and P bits set at a logical zero, where P is less than
M, to form a P-left-shifted-bit results.

By providing a multiplexer at the input, which chooses between a zero-shifted M-bit result to
be input to the shift circuit, or an M-bit result that has already been shifted by P bits to be input to the
shift circuit, the number of multiplexers used in the shift circuit can be reduced by one-half thus
reducing the capacitance of the switch circuit by approximately half. This reduces the power
consumption by approximately one-half when the shift circuit is switched. Another feature provided
by certain preferred embodiments of the present invention is the integration of the output multiplexer
of the barrel shifter within the shift circuit. This integration reduces the delay from the input to the

output.

The foregoing and other objects, features, aspects and advantages of the present invention will
become more apparent from the following detailed description of the present invention when taken in

conjunction with the accompanying drawings.



Role of barrel shifter in array processing

This invention relates to a system for storing and processing an array of data-elements, such

as pixel data.

In particular, the invention is concerned with such a system which comprises a memory
having a plurality of memory locations each having a capacity of a predetermined number B (e.g. 32)
bits and a processing means for processing data elements and operable to read the data-elements from
and/or write the data elements to the memory. Although the memory and processing means are
capable of dealing with the predetermined number B of bits (e.g. 32), in some applications, the data-
elements may have a lesser resolution (e.g. 16 or 8 bits). In such cases, it would be possible to use
only 16 or 8 bits of the 32 bits available for each data-element. However, the memory would not then
be used to its full capacity. Also, in a demand-paged dual memory system which pages are swapped
from a paging memory into the first-mentioned memory, pages of data-elements would need to be

swapped more often than is necessary.

It may therefore be considered expedient to split the whole memory into two for 16-bit data,
or four for 8-bit data, and thus overlay whole sub-arrays of the data-elements one on top of another.
This would make available the whole capacity of the memory, but would suffer from the
disadvantage that severe complications would arise when swapping, for example, just one page of 16-
bit or 8-bit data between the memory and paging memory, because it would be necessary to select
only half or a quarter of the stored data at each memory location for transfer from the memory to the
paging memory, and it would be necessary to mask off half or three-quarters of the memory when

transferring a page of data from the paging memory to the first memory.

In order to overcome this problem, in accordance with the invention, the processing means is
operable in a mode for processing data-elements having a predetermined number b (e.g. 16) bits not
greater than half of said predetermined number B and being operable to read the data-elements from
and/or write the data elements to different bit levels (e.g. L(0), L(1)) of the memory locations so that
a plurality of data-elements can be stored at such a memory location and so that at no memory

location is there stored data-elements from more than one page.



In one embodiment, data elements which are adjacent in at least one direction in the data-
array are stored at different bit levels in the memory. However, in a preferred embodiment, the data-
elements are stored in the memory in aligned groups of N (e.g. 16) data-elements, and data elements
of groups which are adjacent in at least one direction in the data-array are stored at different bit levels
in the memory. In this case, in one arrangement, each memory location is divided into two, that is to
say, the number b (e.g. 16) of bits of a data-element is half of the number B (e.g. 32) of bits of a
memory location, and the data-elements are arranged in patches each of two groups with the data-
elements of the two groups being stored at two respective different bit levels (e.g. bits 0-15, bits 16-
31). In another arrangement, each memory location is divided into four, that is to say the number b
(e.g. 8) of bits of a data-element is a quarter of the number B (e.g. 32) of bits of a memory location,
and the data-elements are arranged in patches of four groups with the pixels of the four groups being
stored at four respective different bit levels (e.g. bits 0-7, bits 8-15) Preferably, the system is operable
in at least two modes selected from the divided-into-two mode, the divided-into-four mode, and a
mode in which all B of the bits at a memory location are used to stored each data-element. In this
case, the memory may be addressed by an address having bits whose significance varies in
accordance with the selected mode of operation, and the system may further comprise a funnel shifter
which receives the address bits whose significance can change and a mode selection signal and which
outputs address bits appropriate to the selected mode and a level signal indicative of the bit level in

the memory of the data-element to be accessed.

During reading of the memory the processing means may be operable to read all of the data at
a memory location, the system further comprising means for supplying a shift signal dependent on
the level signal to the processing means and the processing means may be operable to bit-shift the
read data by an amount dependent on the shift signal to that the data-element to be processed

occupies predetermined bit positions.

During writing to the memory, in at least said first-mentioned mode the processing means is
preferably operable to duplicate the bits to be written at the different levels and the system may
comprise means for supplying a partial write-enable signal dependent on the level signal for
controlling the memory so that the data-element is written only to the appropriate bit levels of the

memory.



In the preferred embodiment, the processing means comprises a plural number N (e.g. 16) of
processors equal in number N to the number of data-elements in a group, where the processors are
capable of accessing in parallel all of the data-elements of a group. In this case upon reading of a
group which is misaligned with respect to an aligned group, the shift signal supplying means is
preferably operable to supply to the processors a respective shift signal for each data-element in the
misaligned group which is dependent upon the position of the data-element in the group and the

misalignment of the group.

Also, upon writing of a group which is misaligned with respect to an aligned group, the partial
write-enable signal supplying means is preferably operable to supply to the memory a respective
partial write-enable signal for each data-element in the misaligned group which is dependent on the

position of the data-element in the group and the misalignment of the group.



CHAPTER — 3
AN INTRODUCTION TO XILINX 9.1i

The ISE 9.11 provides Xilinx PLD designers with the basic design process using ISE 9.1i. In

this chapter you will understande of how to create, verify, and implement a design.

This chapter contains the following sections:

e “Getting Started”

e “Create a New Project”

e “Create an HDL Source”

e “Design Simulation”

e “Create Timing Constraints”

e “Implement Design and Verify Constraints”

e “Reimplement Design and Verify Pin Locations”

e “Download Design to the Spartan™-3 Demo Board”

3.1 Getting Started

Software Requirements:- ISE 9.11
Hardware Requirements:- Spartan-3 Startup Kit, containing the Spartan-3 Startup Kit Demo Board.

Starting the ISE Software
To start ISE, double-click the desktop icon,




or start ISE from the Start menu by selecting:

Note

Start
All Programs
Xilinx ISE 9.1i

Project Navigator

differ from the one

above.Accessing Help

> Your start-up path is set during the installation process and may

At any time during the tutorial, you can access online help for additional

about the ISE software and related tools.
To open Help, do either of the following:
e Press F1 to view Help for the specific tool or function that you have selected orhighlighted.
e Launch the ISE Help Contents from the Help menu. It contains information about creating

and maintaining your complete design flow in ISE.

ﬁ Xilinx - ISE - C:Mutorialkdtutorial.ise

R P D T e T

.......

‘DPHEHS LB R 88Uyl
AR T

Software Manuals
Yilims orthe Web ok
Tutarials r
Tip of the Day
Software Updates, ..

about.,

ISE Help Topics

information



3.2 Create a New Project

Create a new ISE project which will target the FPGA device on the Spartan-3 Startup Kit demo
board.

To create a new project:

1. Select File
New Project... The New Project Wizard appears.

2. Type tutorial in the Project Name field.

3. Enter or browse to a location (directory path) for the new project. A tutorial

subdirectory is created automatically.

4. Verify that HDL is selected from the Top-Level Source Type list.

5. Click Next to move to the device properties page

6. Fill in the properties in the table as shown below:

e Product Category: All

e Family: Spartan3

e Device: XC3S200

e Package: FT256

e Speed Grade: -4

e Top-Level Source Type: HDL

e Synthesis Tool: XST (VHDL/Verilog)

e Simulator: ISE Simulator (VHDL/Verilog)
e Preferred Language: VHDL (or Verilog)

e Verify that Enable Enhanced Design Summary is selected.



Leave the default values in the remaining fields.

When the table is complete, your project properties will look like the following:

E New Project Wizard - Device Properties

Select the Deévice and Design Flow for the Project

I Property Hame "»-"aIL,!!a

Product Categon iGeneral Purpose w
| Family 'SpartangE w
Device =L 35600E »
I Fackage FG320 “
I Speed -4 Lo
Top-Level Source Tupe _I-IEJL

Syntheziz Tool #=5T MHDLAYerilog) b
| Simulator | ISE Simulator [YHDLAYenlog) L
| Freferred Language: | WYHOL b
| E nable Enhanced Design Summany

Enable Mezzage Filterng il

| Dizplay |ncremental Meszages ]

[ ¢ Back ] [ Pt J ’ Cancel

7. Click Next to proceed to the Create New Source window in the New Project Wizard. At the end of

the next section, your new project will be complete.



3.3 Create an HDL Source

In this section, you will create the top-level HDL file for your design. Determine the language that
you wish to use for the tutorial. Then, continue either to the “Creating a VHDL Source” section

below, or skip to the “Creating a Verilog Source” section.

Creating a VHDL Source

Create a VHDL source file for the project as follows:

1. Click the New Source button in the New Project Wizard.
2. Select VHDL Module as the source type.

3. Type in the file name counter.

4. Verify that the Add to project checkbox is selected.

5. Click Next.

6. Declare the ports for the counter design by filling in the port information as shown below:

== New Source Wizard - Defing Modula

EFlit, Mame: coviker |
Aarc beckare Hare B ool avion=l i
Prrt by s [: rerhirn N {2 53 = .
CLOZK " W
\BITCET I n w“I _
COUN Ol ] wi= | 3 U
f »[]
n bt |_|
f w |
- Taill |
il =] T
= el | ! .
" =] | . =
Arre Infr | 233k ] Mesl - ] [ Taarel

Figure 2: Define Madule



7. Click Next, then Finish in the New Source Wizard - Summary dialog box to complete the new

source file template.

8. Click Next, then Next, then Finish.

The source file containing the entity/architecture pair displays in the workspace, and the counter

displays in the Source tab, as shown below:

= anne ISF CrmuresicNauraral. e [osunizes0r]
A Tk = Ak Prof=e=. S ies Poor-1n encn=e I-F =FLE
Pl lh T N S, M lll = TS B | - rEEA LipE RN BMAEG
PR RERLET e s T O e A A
[ = i r
e doi | cwdbeiakepbaredee s W Mambe e LU S E i == Tumpas
Tr=ar. g Friuan sk : i
'"::'."_" - L T (L ek R 1]
= [ -eEa e N
Tl vdsa - ebasris o] ' EEMREEE  ERE
4
=)
17
i=
1
™ e andeneyes:
11
1s w13z omi
ig = Efviscon C.J. = Tl & Croeawced,
17 == Lmied Tanmes s
LT .
9 -
MEtaet. ool | Plles | =4
= it P, P i e H ) P P PR
- ST R WP S P
<3 SEFLS_ X L ARLLREL AL
ol Ernarg Souze =4
I E [ N P R !: - Bl Wl Loodusloyy LiLiacy daclviguoon JE —Uwneze Leo loy
Ol Dl U e gl
£s- |
ad
r i |
s T
23 =0 T ED
A 1 AT WATE YT 1 ] bR
hiL. | e AT
31
L] CEDRITDALETE  s2HGRAC AL O OLEIDE A0
bl
=8 Legar
=
ol
Ak o e amal;
«d -
[ | >
b | Fd vevd=e oF
LA T s R T

Digiira = Maw Project inlSE

Using Language Templates (VHDL)
The next step in creating the new source is to add the behavioral description for the counter. To do
this you will use a simple counter code example from the ISE Language templates and customize it

for the counter design.



1. Place the cursor just below the begin statement within the counter architecture.

2. Open the Language Templates by selecting Edit
e Language Templates...
Note: You can tile the Language Templates and the counter file by selecting Window

e Tile Vertically to make them both visible.

3. Using the “+” symbol, browse to the following code example:

VHDL

e Synthesis Constructs
e Coding Examples

e Counters

e Binary

e Up/Down Counters

e Simple Counter
1. With Simple Counter selected, select Edit
2. Use in File, or select the Use Template in File toolbar button. This step copies the template

into the counter source file.

4. Close the Language Templates.



Final Editing of the VHDL Source:

1. Add the following signal declaration to handle the feedback of the counter output
below the architecture declaration and above the first begin statement:

signal count_int : std logic_vector(3 downto 0) :"0000";

2. Customize the source file for the counter design by replacing the port and signal name

placeholders with the actual ones as follows:

e replace all occurrences of <clock> with CLOCK
e replace all occurrences of <count_direction> with DIRECTION
e replace all occurrences of <count> with count_int
3. Add the following line below the end process; statement:
COUNT _ OUT <= count_int;
4. Save the file by selecting File Save.

When you are finished, the counter source file will look like the following:

library IEEE;

use [IEEE.STD LOGIC 1164.ALL;

use [EEE.STD LOGIC ARITH.ALL;

use [IEEE.STD LOGIC UNSIGNED.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitive in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity counter is

Port ( CLOCK : in STD_LOGIC;

DIRECTION : in STD_LOGIC;

COUNT _OUT : out STD LOGIC VECTOR (3 downto 0));

end counter;



architecture Behavioral of counter is
signal count_int : std logic_vector(3 downto 0) :="0000";
begin

process (CLOCK)

begin

if CLOCK='1" and CLOCK'event then
if DIRECTION="1" then

count_int <= count int + 1;

else

count_int <= count int - 1;

end if;

end if;

end process;

COUNT _OUT <= count_int;

end Behavioral;

You have now created the VHDL source for the tutorial project. Skip past the Verilog
sections below, and proceed to the “Checking the Syntax of the New Counter

Module” section.

Checking the Syntax of the New Counter Module

When the source files are complete, check the syntax of the design to find errors and types.

1. Verify that Synthesis/Implementation is selected from the drop-
down list in the Sources window.

2. Select the counter design source in the Sources window to display the
related processes in the Processes window.

3. Click the “+” next to the Synthesize-XST process to expand the
process group.

4. Double-click the Check Syntax process.



Note: You must correct any errors found in your source files. You can check for errors in the
Console tab of the Transcript window. If you continue without valid syntax, you will not be able to

simulate or synthesize your design.

5. Close the HDL file.

3.4 Design Simulation

Verifying Functionality using Behavioral Simulation

Create a test bench waveform containing input stimulus you can use to verify the
functionality of the counter module. The test bench waveform is a graphical view of a test

bench.

Create the test bench waveform as follows:

1. Select the counter HDL file in the Sources window.
2. Create a new test bench source by selecting Project ' New Source.
3. In the New Source Wizard, select Test Bench WaveForm as the source type, and type
counter_tbw in the File Name field.
4. Click Next.
5. The Associated Source page shows that you are associating the test bench waveform
with the source file counter. Click Next.
6. The Summary page shows that the source will be added to the project, and it displays
the source directory, type and name. Click Finish.
7. You need to set the clock frequency, setup time and output delay times in the Initialize
Timing dialog box before the test bench waveform editing window opens.
The requirements for this design are the following:

e The counter must operate correctly with an input clock frequency =25 MHz.

e The DIRECTION input will be valid 10 ns before the rising edge of CLOCK.

e The output (COUNT _OUT) must be valid 10 ns after the rising edge of CLOCK.



The design requirements correspond with the values below.
Fill in the fields in the Initialize Timing dialog box with the following information:
e Clock High Time: 20 ns.
e Clock Low Time: 20 ns.
e Input Setup Time: 10 ns.
e Output Valid Delay: 10 ns.
o Offset: 0 ns.
e (Global Signals: GSR (FPGA)
Note: When GSR(FPGA) is enabled, 100 ns. is added to the Offset value automatically.
e Initial Length of Test Bench: 1500 ns.

Leave the default values in the remaining fields.

£ [nitial Timing and Cloclk Wizard - [nitialize Timing = | 2]
Fa H =
M4 LT g : Ill:ilmlrrll_ll 15
' v LIRIRIR
output ozl T :‘_'::!hlll‘

o— L —_ ol _E
Figk for ; I Tr v ;

Clerl Timing Ifoirnsinn Clnele Irfimrradinn

Iripiaz g gwssigeiae <L e puat Selop Tane' a0 {E;. Single Clrek i ek g
uulpabs are chiecsed al "Lalpal vald Lrelay”. ;

o : 3 Muhbple Ulacks
% RiziroEdos 3 Faling Ecoe e 2

7 Dual Edgs (DD o DET)

o Cambirmtaris [oe intsnel cdaek)]

Clocs Higk Tirez {20 | nE Combinatorial Timing Informatios
F R e e I Fik Inputi are singreed, cotpoks srs decoded than
! Criechaed. 2ocelan Del e priposy ard wolgiony Seoidy
Input S=tap linre (U | 1a =53 ginrenbichechimgaonlichs
e : I, : :
Outputvald D claw !||:| | hz Lhech Dulpuly el _| 15 Al I puls dig Sy
Aff=ak :ﬂjﬁ | he A ks [57 ] nncdbber | ateabs moe ) e ke

flnbil Figrals

lrabimll minghhoak I es] Hene e i'.h I | (LS
(R I [=] Lrit e niag L

Tima Scals: | n |

[ il far Tkt | 100 | e

L #dd ssvnzbronous Signal Supocrt

< Beck [ Firnizd ] [ Car uwl ]

Frgrre: 2 Initialize Timing




8. Click Finish to complete the timing initialization.
9. The blue shaded areas that precede the rising edge of the CLOCK correspond to the
Input Setup Time in the Initialize Timing dialog box. Toggle the DIRECTION port to

define the input stimulus for the counter design as follows:

e Click on the blue cell at approximately the 300 ns to assert DIRECTION high so that the
counter will count up.
e Click on the blue cell at approximately the 900 ns to assert DIRECTION low so that the

counter will count down.

Note: For more accurate alignment, you can use the Zoom In and Zoom Out toolbar buttons.

5 xaun: - 15k - Cratulsriandutardal.ize - |EowTiar - thw]

BlE: FUU e Togal Soen: s TdFiaa 5 ondin s Hid I =]
OFHG B FE 2 B al L iR a8 &K |
EREB IRV T A4S 2EHE R ek ol = o]

End Time;

1500 ns 'lti*rs ltiirs -1=I:ir3 rz i0ian: - Mors  [40ChE
|

CIC 9% FE:iI'I'E 'Ei:i I
7S 11 11 T [ I 111 R 1 AR

[T I ST ZLL 0 o o

o o e |

Figuees 8- Tast Bench Wavaform

10. Save the waveform.
11. In the Sources window, select the Behavioral Simulation view to see that the test bench

waveform file is automatically added to your project.



| Sources

- | Synthesis/mplemnentation w |

'E'Eﬂ"tUt.uri Synthesis Amplementation
| =R PreeT B ehiaviorsl Simulation

| il
| B8 Sowces | gy Snapshots | [[yLiE >

o ey

Figure 9: Behavior Simulation Selection

12. Close the test bench waveform.

3.5 Simulating Design Functionality

Verify that the counter design functions as you expect by performing behavior simulation as follows:

1. Verify that Behavioral Simulation and counter_tbw are selected in

the Sources window.

2. In the Processes tab, click the “+” to expand the Xilinx ISE Simulator
process and double-click the Simulate Behavioral Model process.
The ISE Simulator opens and runs the simulation to the end of the
test bench.

3. To view your simulation results, select the Simulation tab and zoom

in on the transitions.

The simulation waveform results will look like the following:



BE Xitina ISE CAlwnorialwusrial.ise [Sanulation]

=.I'b Tob TR P o "Pru.t-.'.-ul='.1..i:".J| bIIIJ-dJ.II Wl 'R:_L ] o o (oI =
DPpHS 2R 3T BEANLAZ A0 RIE[D oo 4 & =
ot e A - e A el e S I |
Mow;
e rs ] ¥ ars £ 1258 15 |
g e U I T L T
Weluek ! JUULILILIULILILI_IJ__JL__LLITIJLI_ILII_IIJLILILILIJLI_LI_I
Mldlezieq L ;
O gleaurtan2a 13 U A M TS O S e O 0 i’f%‘i%‘«ﬁiﬁi‘
= Srumoe

Digues 10 Simulation Aesults

Note: You can ignore any rows that start with TX.

4. Verify that the counter is counting up and down as expected.

5. Close the simulation view. If you are prompted with the following
message, “You have an active simulation open. Are you sure you want
to close it?*, click Yes to continue. You have now completed

simulation of your design using the ISE Simulator.

3.6 Create Timing Constraints

Specify the timing between the FPGA and its surrounding logic as well as the frequency the design
must operate at internal to the FPGA. The timing is specified by entering constraints that guide the
placement and routing of the design. It is recommended that you enter global constraints. The clock
period constraint specifies the clock frequency at which your design must operate inside the FPGA.
The offset constraints specify when to expect valid data at the FPGA inputs and when valid data will
be available at the FPGA outputs.



3.6.1 Entering Timing Constraints

To constrain the design do the following:

1. Select Synthesis/Implementation from the drop-down list in the
Sources window.

2. Select the counter HDL source file.

3. Click the “+” sign next to the User Constraints processes group, and
double-click the

Create Timing Constraints process.ISE runs the Synthesis and Translate steps and automatically

creates a User Constraints File (UCF). You will be prompted with the following message:

= Project Nawigator

=

/ E) This process requires that an Implementation Constraint File (LCF) be added
* . tothe project and associated with the selected design module, Would wou like

Project Mavigator to autom.atically create a UCF and add it to the project at
khis tirrie?

If vou select "M vou will need to create or add an existing UCF ta the project
before running this process .,

es [

Mo ]

Figure 11: Prompt to Add UCF File to Project

4. Click Yes to add the UCF file to your project. The counter.ucf file is

added to your project and is visible in the Sources window. The Xilinx
constraints Editor opens automatically.

Note: You can also create a UCF file for your project by selecting Project Create New Source



In the next step, enter values in the fields associated with CLOCK in the Constraints Editor Global
tab.

5. Select CLOCK in the Clock Net Name field, then select the Period toolbar button or double-click
the empty Period field to display the Clock Period dialog box.

6. Enter 40 ns in the Time field.

3.6.2 Implement Design and Verify Constraints

Implement the design and verify that it meets the timing constraints specified in the previous section.

Implementing the Design

1. Select the counter source file in the Sources window.

2. Open the Design Summary by double-clicking the View Design
Summary process In the Processes tab.

3. Double-click the Implement Design process in the Processes tab.

4. Notice that after Implementation is complete, the Implementation
processes have a green check mark next to them indicating that they

completed successfully without Errors or Warnings.



ES50 M. 15E - € Veutordali upeclal, ke [TeegnSunn-ay] = (Bl=
e BT o S L LR
AR ERE R AISE I jaeimE 000 0 = NErHG Ligaflkowma|l)y
HEd BRI

Lk | Bt Lo by e THINRIG Fuipert G #
sarceikr L el vokncnickan e Homoe ot L1 al Elantig v Eiafin1 oo i u.mt-.i::lb Amidadtiabd
Hrircts H-cm_,nc:& s | Brmnman Fila: i 8

St [A170 Froceriss [ T e
NS A e [ TiringCaruiri Hems
= ki Al s il Emem Tarak P - Wanmm:
Llock haaok U'raoo:
HSLEIw T e Trmbad | 70 T allwalel Tk S
| bbb [ ST
[ o dain i bremim e i
EH::I.'I::.'uq:: T IIITLIII.“LW’“!.‘“I‘H-I.I
[A 7erm aw Fonts senaer Fupadior ehndar aehw |
A Tz
[ UeaenMzsiage: LT T ey
[A 6l ncrl otz e o
bl B e h L T R il T (e o S S
H Lo e Furla sl HosTullen 4 AT B
- - | . - a.
A} sors | gy Seepeher | b | B i theban Fioe: Finn i ol &g LT ¥ AR K
| e Lt
[T | AR —{ hurterilooooes 1 al =
e [A sicbe | Ak opat o
(REETEE || " Hadim ik 3 T
o L HT N Chirs
= .I.-M;:, m._" ke sk n ks
'] o =g b v 1
BE Degniite  HmbersiChes: T = e
E ﬁ 1k Cunw ranls oo i e Conbaaig s log
Coezte Trrg Consarct o hiere BILLAE- e =
@ e R | STV E . R P Tidod Ml 4 + Ll =
[l A= Fakame P ul | I
-1 bl ShonFaivin el U N E S S S Y | S
[E Peebdeaties i [ B aiame Rrnle ol el 3 17 aTE
L _ rr;.nn..;;..u Trull | ; T euvheral sLLRD k 12T
e BhuaFalby e i m e e
£ FyilireeentDetn [ &bores ot F et ::t:lt':'-llw e £
::: L"'"’l“ Eibllind 1A% A= M
;{".‘EEP:] s oourd bzrl 30y
H [EC]

Y Geerdelcprring e : z
i 3 el prarming T Feiterrimne: S =
t*: Frinzee " o~ '

PR = RETR o

Figure 16: Post Implementation Design Summary

5. Locate the Performance Summary table near the bottom of the design
Summary.

6. Click the All Constraints Met link in the Timing Constraints field to
view the Timing Constraints report. Verify that the design meets the

specified timing requirements.

Assigning Pin Location Constraints

Specify the pin locations for the ports of the design so that they are connected correctly on the

Spartan-3 Startup Kit demo board.



To constrain the design ports to package pins, do the following:

. Verify that counter is selected in the Sources window.
. Double-click the Assign Package Pins process found in the User
constraints process group. The Xilinx Pinout and Area Constraints
Editor (PACE) opens.
. Select the Package View tab.
. In the Design Object List window, enter a pin location for each pin in
the Loc column using the following information:
e CLOCK input port connects to FPGA pin T9 (GCKO signal on board)
e COUNT_OUT<O0> output port connects to FPGA pin K12 (LDO signal on board)
e COUNT_OUT<I1> output port connects to FPGA pin P14 (LD1 signal on board)
e COUNT_OUT<2> output port connects to FPGA pin L12 (LD2 signal on board)
e COUNT OUT<3> output port connects to FPGA pin N14 (LD3 signal on board)
e DIRECTION input port connects to FPGA pin K13 (SW7 signal on board)

Notice that the assigned pin locations are shown in blue:

£ ®ili nx PACT - [ Mtoforiadcounter_ocf
I l= Ldb Wi=w  Lils  Gress ools wardows Help

e | e N7

1o 5 A4 2 4707112141472 15
Y= oo o |eeom |
E= G| i g i E
LA XX U 1L | C
" miaw F
1N Diireelinmn H 7 EEEmEl P
§CoLOCck  Iepal [ . § 3 B |
“OUNT OJT<Cx Cuppil = = ~F E ¥ | == - I-I
SUUMI_J0] 4T Lol nE
TLLIRL_EE 1 wiew 1 aaynal ni ErSEEES e :
SOUNT BJT<Z Cupet _ nld - SN, - .
JIREZTION Tripil (W | | =) - e
] i ] e 8
J E= Y = = F
ll-l Granp [IJ'I'I I'hirr:r:rinnl- I o I. |_| _| '- |_| [ ] T”"
4 COUNT OUT| Qutp.t I 1 22 45 8 7 2 010111212141316
| % Pavhaww Wivw A Bahischrs 7 4 | s

Figure 782; Pachkage Pin Locations



5. Select File
Save. You are prompted to select the bus delimiter type based on the synthesis tool you are using.
Select XST Default <> and click OK.

6. Close PACE.

Notice that the Implement Design processes have an orange question mark next to them,
indicating they are out-of-date with one or more of the design files. This is because the UCF file has

been modified.

3.6.3 Download Design to the Spartan™-3 Demo Board

This is the last step in the design verification process. This section provides simple instructions for

downloading the counter design to the Spartan-3 Starter Kit demo board.

1. Connect the 5V DC power cable to the power input on the demo
board (J4).
2. Connect the download cable between the PC and demo board
AJ7).
3. Select Synthesis/Implementation from the drop-down list in
the Sources window.
4. Select counter in the Sources window.
5. In the Processes window, click the “+” sign to expand the Generate
Programming File processes.
6. Double-click the Configure Device (iMPACT) process.
7. The Xilinx WebTalk Dialog box may open during this process. Click Decline.
8. Select Disable the collection of device usage statistics for this project
only and click OK.
iMPACT opens and the Configure Devices dialog box is displayed.



IMPACT - Welcome to iMPACT

Fleaze zelect an action from the list below

(=) Configure devices using B oundary-Scan [JTAG)

| Automatically connect to 2 cable and idently Boundary-Scan chain_ |
(3 Prepare a PROM File
s Prepare a System ACE Fils
() Prepare a Boundan-Scan File

{7 Configure devices

Lizing Slave Senial mode

# Back |_ Finizh ’ Cancel

Figure 21: IMPACT Welcome Dialog Box

9. In the Welcome dialog box, select Configure devices using Boundary-
Scan (JTAG).

10. Verify that Automatically connect to a cable and identify
Boundary-Scan chain is selected.

11. Click Finish.

12. If you get a message saying that there are two devices found, click
OK to continue. The devices connected to the JTAG chain on the
board will be detected and displayed in the IMPACT window.

13. The Assign New Configuration File dialog box appears. To assign a
configuration file to the xc3s200 device in the JTAG chain, select the

counter. bit file and click Open.



2 Ylin- 51 L Pyoect

e

i am
if sm

EEE E

Counces

b o=+ ol o i - I

S Mularial¥ ulorisl sz [Bowicny Scan]

(& e Edb o YEe Project Source I'II_BE! Opeatons Japat Deay Wncow Help

X

i S0 3 Y

D3 FO L UREX am M ASXEA BARINT SN 0 al o

4]

B

x

Salfouncen Soen

N |z beaad

ek iar
AalDeskpCordg.raion
'.‘:]Elir:rJ: Sl Gt
[E]tyzenat

[Z]FRON FlaFomatix

: 1 I
El Zonszle °E|u|= !_L"‘r'urlrlw!ﬁ'ldEhul! _-ﬁFrllJlrlFi:qs

m a 4
]
e T e

flelikes
- fie " —

= hsslgr Mew Confipuation File

= e T T Lok | = 0 /Pieriafade P 1 Auioial v mErifEsE
ol | s | Py abae: o = - o
i - ol > - =. O e O e iz
| Procezsas X omm ChEmtmoozave sl
L wres T} eeme |5 crurte bi
File name: | Cpen
E;.‘ Pm.cmﬂv- lrrhprshrn Trershore File typer | 0D exign Flee [kt rt " by s e bt | Carel
| Tezerrpl o l Corzels) ] l Ho: _|
.:f' ++ TATCHO CHD . oo bHude -l el ) hore
S TETRATCH CMD @os=iMode -k =
GUI —— RUCO COHN=CT 10 Carle. .. 1 Erably Frugaminnig ol SF1 Sleehi D o stadiad o i FRGS
e R e I S e e e, | 3 Frabla Prearnstnrsg o R Sl Disters 2o o i RS
< | ¥

| Zonfguation | Pyald T 200Kz P11

14. If you get a Warning message, click OK.

15. Select Bypass to skip any remaining devices.

16. Right-click on the xc3s200 device image, and select Program... The

Programming Properties dialog box opens.

17. Click OK to program the device.

Program Succeeded

When programming is complete, the Program Succeeded message is displayed.

On the board, LEDs 0, 1, 2, and 3 are lit, indicating that the counter is running.

18. Close iMPACT without saving.



Chapter - 4
An Introduction to FPGA

4.1 Introduction

As described in Architectural Overview, the Spartan™-3E FPGA architecture consists of five

fundamental functional elements:

* Input/Output Blocks (I0Bs)

* Configurable Logic Block (CLB) and Slice Resources
* Block RAM

* Dedicated Multipliers

* Digital Clock Managers (DCMs)

The following sections provide detailed information on each of these functions. In addition, this

section also describes the following functions:

* Clocking Infrastructure
* Interconnect
* Configuration

* Powering Spartan-3E FPGAs



4.2 Input/output Blocks (I0Bs)

For additional information, refer to the “Using I/O Resources” chapter in UG331.

I0B Overview

The Input/Output Block (IOB) provides a programmable, unidirectional or bidirectional interface
between a package pin and the FPGA’s internal logic. The IOB is similar to that of the Spartan-3

family with the following differences:

* Input-only blocks are added
* Programmable input delays are added to all blocks

* DDR flip-flops can be shared between adjacent IOBs

The unidirectional input-only block has a subset of the full IOB capabilities. Thus there are no
connections or logic for an output path. The following paragraphs assume that any reference to output
functionality does not apply to the input-only blocks. The number of input-only blocks varies with

device size, but is never more than 25% of the total IOB count.

Figure 1 is a simplified diagram of the IOB’s internal structure. There are three main signal paths
within the IOB: the output path, input path, and 3-state path. Each path has its own pair of storage
elements that can act as either registers or latches. For more information, see Storage Element

Functions.



The three main signal paths are as follows:

* The input path carries data from the pad, which is bonded to a package pin, through an optional
programmable delay element directly to the I line. After the delay element, there are alternate routes
through a pair of storage elements to the IQ1 and IQ2 lines. The IOB outputs I, IQ1, and 1Q2 lead to
the FPGA’s internal logic. The delay element can be set to ensure a hold

time of zero (see Input Delay Functions).

* The output path, starting with the Ol and O2 lines, carries data from the FPGA’s internal logic
through a multiplexer and then a three-state driver to the IOB pad. In addition to this direct path, the

multiplexer provides the option to insert a pair of storage elements.

* The 3-state path determines when the output driver is high impedance. The T1 and T2 lines carry
data from nthe FPGA’s internal logic through a multiplexer to the output driver. In addition to this
direct path, the multiplexer provides the option to insert a pair of

storage elements.

« All signal paths entering the IOB, including those associated with the storage elements, have an
inverter option. Any inverter placed on these paths is

automatically absorbed into the IOB.



TFFI
T — l [ o
=
CK
SR RV ﬁ
I COR 2
L
| e C—, J. J
L~
Te | 32— +— [ a 4 |_
e TFFz
I L
5R RS
I
[ “hres-state Jach
l'irljljl:l
ZFFH
Ol L l ] 4] PR
CTELKEA = . (624 . Fulldp 2 % E2D
ER R=w
[ | :' OOF M. = In
11_1% - b Z] P
0L — J - '
- Frogram- 2l T FE0
02 l Ti o |_ mablz Lo 4 FE0
— —~FF2 Output
C= Cr ver R
CTCLHE —— - CH
SN N-w
I 4o | Fesrer
|_I.l.|
Cutpul Pall-
Frogrammanl s
(e Aok ay 4 LYCMSS, LVTTL PG
: )
(6] B B | Mragrammaklz
Dzlay Sind Eﬁ'ﬂiﬁ SEncards
IMRRINT s - 4 o o UEIng YRFF
ICORINZ > = - S = Hn="
IGTE L T 2— K
IoC = :'_-.::! R=W e Citferertial Standaids
| ) [] 12 P
Tom
Q< J Adizant
Lo o ICE.
_ FF=
ICLREZ = [
5 M-

SR

— 1=

FEY —=

Heotes:

Inzat Path

Io ATIZE zotrel erd catpud patlt sicralz Fave an invorling polasizy ootizaow htr the 10E.

NI INTS NG sicr el =howen wilh cbashiec lines o gl B lhe adjecen IR 0 s

Simplified IOB Diagram

el B EO | e Py

dileranlial pedr anly, real B lhis FR3RA Talais



4.3 Configurable Logic Block (CLB) and Slice Resources

For additional information, refer to the “Using Configurable Logic Blocks (CLBs)” chapter in
UG331.

CLB Overview

The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing
synchronous as well as combinatorial circuits. Each CLB contains four slices, and each slice contains
two Look-Up Tables (LUTs) to implement logic and two dedicated storage elements that can be used
as flip-flops or latches. The LUTs can be used as a 16x1 memory (RAMI16) or as a 16-bit shift
register (SRL16), and additional multiplexers and carry logic simplify wide

logic and arithmetic functions. Most general-purpose logic in a design is automatically mapped to the
slice resources in the CLBs. Each CLB is identical, and the Spartan-3E family CLB structure is
identical to that for the Spartan-3 family.



CLB Array

The CLBs are arranged in a regular array of rows and columns as shown in Figure 14.

Each density varies by the number of rows and columns of CLBs (see Table 9).

Table 9: Spartan-3E CLB Resources

.
2 & . 4 : .
L I QP SN TaeE B S
R 1 I I
.// ] 503 [ 13 [ 22v3 | X3IY3 | e w
Z | I :
— | [
i ] | SO 2 || $A%2 [ #2Y2 | ¥I¥2 | mea
- — | I _|
o o | s et e Vgl
,” ! [ [
] N 1 "
SE;E{HE[FI-EE — : XU [ 21 H 22V KA : LR R
< FPGA 1 I I
N — (| Xovo || X172 ||| %2v0| X3V0 | mew
i ) S 38 N | S p—
JOTI IRl T [T »+»
e B
—— A slice
oL W s
CLB Locations



CLE CLE CLE LUTs / Equivalam RAoMie | Distributad

Device Rovws Columns Totall!! clices | FlipFlops | Logic Cells aRL1G REAM Bils
HITASADOZ 22 8 240 S0 1,820 2180 860 15,350
A Z35ER0= 34 g g 2448 4.898 5.508 2148 38,758
HAER00 - 46 44 1,164 £ Ghb R LA 4.E0E fL 496
HIASIZ00E i 4 2168 8 AT 17 244 "8h12 8 672 133,752
XZ351600E 76 58 3.EBE 1,752 20,60 33,782 14,752 236,032
MNotes:
t Theramibie of 71Ps s 1= 1o s ol ple ol b s s eohrmres baeanse e boes RAW ol pliar beeks ol Fie 00 RS s

GG el N B amony (500 Foura 17 A sduls Th

Slices:

Each CLB comprises four interconnected slices, as shown in Figure 16. These slices are grouped in

pairs. Each pair is organized as a column with an independent carry chain. The left pair supports both

logic and memory functions and its slices are called SLICEM. The right pair supports logic only and

its slices are called SLICEL. Therefore half the LUTs support both logic and memory (including both

RAMI16 and SRL16 shift registers) while half support logic only, and the two types alternate

throughout the array columns. The SLICEL reduces the size of the CLB and lowers the cost of the

device, and can also provide a performance

over the SLICEM.

advantage



m--.nw_m,l P
= B o —>va
e = =l :’]"‘““T" = n
g N . EWALE
[ .:l:l } J 3 =y
-ru:—w 1 :
=1
L

g 3
s
MR CI—— | e
]
H I
*— C== M3
Y L et Lol ~ BT
Ty Fivw o'
o
SR
B L -
LW ¢
Carmmon Logis
ovmaL =, TF
n — Xm
e | L
raan ——
YR - Fa
b e
G REER iy —x
[l L ]
— LY
I _| He e
mmx
a=
orar o
I~
\‘ e
= . 'r_r
0 =i o BT
Erveury Pearvinm
LEDOEmD: Insirgphlh P mbarbiir s U
——- Chailmden M el IHFTOUT (=]
el Tyl nlen il ORI T2 e 2007
Mortos:
rpleans Lo resorlosoged peosle ey s wocd D cw ol opoliores B g b oo lirncs Tor sonicue womhors ands nal Jdcesn,
2 Tha Indsy | asn ba 7T arn casmnclrg a0 tha 2llea Thas uspar S ICE qas ar TRkl =nd “ha Lpesr 5 100 has
e R AL, Thie s SRS E S wnd SLECER ok P o FELEE

Simplified Diagram of the Left-Hand SLICEM



Left-Hand SLICEM Right-Hand SLICEL
iLagic or Distributed RAR iLagic Only)
ar Shift Register)
CouT
| ecB | I
' SLICE
< T > ®1Y1 <:;:>
| |
| |
I |
. SLICE
<A 2l Xivo <:|>
™
Switzh | caut f | Interconnect
Matrix I CIM I to Meighbors
SLICE '
<|:> XOY1 < '
| SHIFTOUT ' :
| SHIFTIN % i
SLICE 1
<::> XOY0 < |
| ‘T |
CIN DS085-2_ 05 DR 104

Arrangement of Slices within the CLB

Slice Location Designations

The Xilinx development software designates the location of a slice according to its X and Y
coordinates, starting in the bottom left corner, as shown in Figure 14. The letter ‘X’ followed

by a number identifies columns of slices, incrementing from the left side of the die to the right. The
letter Y’ followed by a number identifies the position of each slice in a pair as well as indicating the
CLB row, incrementing from he bottom of the die. Figure 16 shows the CLB located in he lower left-
hand corner of the die. The SLICEM always as an even ‘X’ number, and the LICEL always has an
odd X’ number.



Slice Overview

A slice includes two LUT function generators and two storage elements, along with additional logic,

as shown in Figure 17.

Both SLICEM and SLICEL have the following elements in common to provide logic, arithmetic, and
ROM functions:

* Two 4-input LUT function generators, F and G
* Two storage elements
* Two wide-function multiplexers, FSMUX and FiIMUX

* Carry and arithmetic logic

aaLdo LT ] A b4
Mar 16 = L-=—" L
ALY LUTz (1G5

LUTE (3 Gary

L ek | B)
it |

Aeqister

i 1

Fal e FEW ¥
SR |- |
| Ran 18 Carvy Ragistar Cary Segistar
LUTA (Fy D LUTA (Fy D
A-thmasic Legic Arthmesic _cgic
SLICEM SLICEL [ T 12 CEORE

Resources in a Slice
The SLICEM pair supports two additional functions:
» Two 16x1 distributed RAM blocks, RAM16
» Two 16-bit shift registers, SRL16

Each of these elements is described in more detail in the following sections.



Logic Cells

The combination of a LUT and a storage element is known as a “Logic Cell”. The additional features
in a slice, such as the wide multiplexers, carry logic, and arithmetic gates, add to the capacity of a
slice, implementing logic that would otherwise require additional LUTs. Benchmarks have shown
that the overall slice is equivalent to 2.25 simple logic cells. This calculation provides the equivalent

logic cell count

Slice Details

Figure 15 is a detailed diagram of the SLICEM. It represents a superset of the elements and
connections to be found in all slices. The dashed and gray lines (blue when viewed in color) indicate
the resources found only in the SLICEM and not in the SLICEL. Each slice has two halves, which are
differentiated as top and bottom to keep them distinct from the upper and lower

slices in a CLB. The control inputs for the clock (CLK), Clock Enable (CE), Slice Write Enable
(SLICEWEI1), and Reset/Set (RS) are shared in common between the two halves. The LUTs located
in the top and bottom portions of the slice are referred to as "G" and "F", respectively, or the "G-
LUT" and the "F-LUT". The storage elements in the top and bottom portions of the slice are called
FFY and FFX, respectively. Each slice has two multiplexers with FSMUX in the bottom

portion of the slice and FIMUX in the top portion. Depending on the slice, the FIMUX takes on the
name FOMUX, F7TMUX, or FSMUX, according to its position in the multiplexer chain. The lower
SLICEL and SLICEM both have an FEOMUX. The upper SLICEM has an F7MUX, and the upper
SLICEL has an FSMUX. The carry chain enters the bottom of the slice as CIN and exits at the top as
COUT. Five multiplexers control the chain: CYINIT, CYOF, and CYMUXF in the bottom portion
and CYOG and CYMUXG in the top portion. The dedicated arithmetic logic includes the exclusive-
OR gates XORF and XORG (bottom and top portions of the slice, respectively) as well as the AND
gates FAND and GAND (bottom and top portions, respectively). See Table 10 for a description of all

the slice input and output signals.



4.4 Interconnect

For additional information, refer to the “Using Interconnect chapter in UG331. Interconnect is the
programmable network of signal pathways between the inputs and outputs of functional elements

within the FPGA, such as IOBs, CLBs, DCMs, and block RAM.

4.5 Overview

Interconnect, also called routing, is segmented for optimal connectivity. Functionally, interconnect
resources are identical to that of the Spartan-3 architecture. There are four kinds of interconnects:
long lines, hex lines, double lines, and direct lines. The Xilinx Place and Route (PAR) software

exploits the rich interconnect array to deliver optimal system performance and the fastest compile

times.

Switch |

Matrix |

Switch

CLB

Switch
Matrix

Matrix |

Switch

¥

OB

Switch
Matrix

Matrix [™

DCM

Switch
Matrix

Switch [
Matrix |

1BKbL MULT
Block 18 x 18
FAM

NEE 08 020E0G

Four Types of Interconnect Tiles (CLBs, IOBs, DCMs, and Block RAM/Multiplier)




Chapter 5
An Introduction to Spartan 3E- Kit

5.1 Introduction

The Basys board is a circuit design and implementation platform that anyone can use to gain
experience building real digital circuits. Built around a Xilinx Spartan-3E Field Programmable Gate
Array and a Cypress EZUSB controller, the Basys board provides complete, ready-to-use hardware
suitable for hosting circuits ranging from basic logic devices to complex controllers. A large
collection of on-board I/O devices and all required FPGA support circuits are included, so countless

designs can be created without the need for any other components.

Four standard expansion connectors allow designs to grow beyond the Basys board using
breadboards, user-designed circuit boards, or Pmods (Pmods are inexpensive analog and digital I/O
modules that offer A/D & D/A conversion, motor drivers, sensor inputs, and many other features).
Signals on the 6-pin connectors are protected against ESD damage and short-circuits, ensuring a long
operating life in any environment. The Basys board works seamlessly with all versions of the Xilinx
ISE tools, including the free WebPack. It ships with a USB cable that provides power and a

programming interface, so no other power supplies or programming cables are required



« MILINX
SPARTAN

e

Figure 1. Basys programming circuit locations

5.2 Board Power

The Basys board is typically powered from a USB cable, but a power jack and battery connector are
also provided so that external supplies can be used. To use USB power, set the power source switch
(SW8) to USB and attach the USB cable. To use an external wall-plug power supply, set SWS to
EXT and attach a 5VDC to 9VDC supply to the center-positive, 2.1/5.5mm power jack. To use
battery power, set SW8 to EXT and attach a 4V-9V battery pack to the 2-pin, 100-mil spaced battery
connector (four AA cells in series make a good 6+/- volt supply). Voltages higher than 9V on either
power connector may cause permanent damage. SW8 can also be used to turn off main power by
setting it to the unused power input (e.g., if USB power is used, setting SW8 to EXT will shut off
board power without unplugging the USB cable).

Input power is routed through the power switch (SW8) to the four 6- pin expansion connectors and to
a National Semiconductor LP8345 voltage regulator. The LP8345 produces the main 3.3V supply for
the board, and it also drives secondary regulators to produce the 2.5V and 1.2V supply voltages
required by the FPGA. Total board current is dependant on FPGA configuration, clock frequency,



and external connections. In test circuits with roughly 20K gates routed, a 50MHz clock source, and
all LEDs illuminated, about 100mA of current is drawn from the 1.2V supply, S0mA from the 2.5V
supply, and 50mA from the 3.3V supply. Required current will increase if larger circuits are

configured in the FPGA, or if peripheral boards are attached.

5.3 Configuration

After power-on, the FPGA on the Basys board must be configured before it can perform any useful
functions. During configuration, a “bit” file is transferred into memory cells within the FPGA to
define the logical functions and circuit interconnects. The free ISE/WebPack CAD software from

Xilinx can be used to create bit files from VHDL, Verilog, or schematic-based source files.

Digilent’s PC-based program called Adept can be used to configure the FPGA with any suitable bit
file stored on the computer. Adept uses the USB cable to transfer a selected bit file from the PC to the
FPGA (via the FPGA’s JTAG programming port). Adept can also program a bit file into an on-board
non-volatile ROM called “Platform Flash”. Once programmed, the Platform Flash can automatically
transfer a stored bit file to the FPGA at a subsequent power-on or reset event if the Mode Jumper is
set to ROM. The FPGA will remain configured until it is reset by a power-cycle event or by the
FPGA reset button (BTNR) being pressed. The Platform Flash ROM will retain a bit file until it is

reprogrammed, regardless of power-cycle events.

To program the Basys board, attach the USB cable to the board (if USB power will not be
used, attach a suitable power supply to the power jack or battery connector on the board, and set the
power switch to VEXT). Start the Adept software, and wait for the FPGA and the Platform Flash
ROM to be recognized. Use the browse function to associate the desired .bit file with the FPGA,
and/or the desired .mcs file with the Platform Flash ROM. Right-click on the device to be
programmed, and select the “program” function. The configuration file will be sent to the FPGA or
Platform Flash, and the software will indicate whether programming was successful. The
“configuration done” LED (LD D) will also illuminate after the FPGA has been successfully

configured.



5.4 Oscillators

The Basys board includes a primary, user settable silicon oscillator that produces 25MHz, SOMHz, or
100MHz based on the position of the clock select jumper at JP4. A socket for a second oscillator is
provided at IC7 (the IC7 socket can accommodate any 3.3V CMOS oscillator in a half-size DIP
package). The primary and secondary oscillators are connected to global clock input pins at pin 54

and pin 53 respectively

5.5 User 1/O

Four pushbuttons and eight slide switches are provided for circuit inputs. Pushbutton inputs are
normally low and driven high only when the pushbutton is pressed. Slide switches generate constant
high or low inputs depending on position. Pushbuttons and slide switches all have series resistors for
protection against short circuits (a short circuit would occur if an FPGA pin assigned to a pushbutton
or slide switch was inadvertently defined as an output). Eight LEDs and a four-digit seven segment
LED display are provided for circuit outputs. LED anodes are driven from the FPGA via current-
limiting resistors, so they will illuminate when a logic ‘1’ is written to the corresponding FPGA pin.
A ninth LED is provided as a power-indicator LED, and a tenth LED (LD-D) illuminates any time
the FPGA has been successfully programmed.

5.6 PS/2 Port

The 6-pin mini-DIN connector can accommodate a PS/2 mouse or keyboard. Most PS/2 devices can
operate from a 3.3V supply, but some older devices may require a SVDC supply. A jumper on the
Basys board (JP1) selects whether 3.3V or VU is supplied to the PS/2 connector. For 5V, set JP1 to
VU and ensure that Basys is powered with a SVDC wall plug supply. For 3.3V, set the jumper to
3.3V. For 3.3V operation, any board power supply (including USB) can be used. Both the mouse and
keyboard use a two-wire serial bus (clock and data) to communicate with a host device. Both use 11-
bit words that include a start, stop and odd parity bit, but the data packets are organized differently,

and the keyboard interface allows bi-directional data transfer.



The clock and data signals are only driven when data transfers occur, and otherwise they are held in
the “idle” state at logic ‘1’. The timings define signal requirements for mouse-to-host
communications and bi-directional keyboard communications. A PS/2 interface circuit can be

implemented in the FPGA to create a keyboard or mouse interface.

5.7 Dumping ProcedureProgramming through JTAG:
For programming the FPGA we need a JTAG cable which is a 6 pin cable converted to a parallel port
cable connected to CPU, So the FPGA is programmed through this cable. And this type of

programming is called “flash programming”.

Connecting the USB Cable
The kit includes a standard USB Type A/Type B cable, similar to the one shown in Figure . The

actual cable colour might vary from the picture.

USB Type B Connector
Connacte to Startar Kit's USE connactor

P s Type A Connector

Connacts to computer's USE connector

Figure 18 Standard USB Type A/Type B Cable

The wider and narrower Type A connector fits the USB connector at the back of the computer. After
installing the Xilinx software, connect the square Type B connector to the Spartan-3E Starter Kit
board, as shown in Figure 19 . The USB connector is on the left side of the board, immediately next
to the Ethernet connector. When the board is powered on, the Windows operating system should
recognize and install the associated driver software.

When the USB cable driver is successfully installed and the board is correctly connected to

the PC, a green LED lights up, indicating a good connection.



Programming via iMPACT

After successfully compiling an FPGA design using the Xilinx development software, the
design can be downloaded using the iMPACT programming software and the USB cable. To begin
programming, connect the USB cable to the starter kit board and apply power to the board. Then,
double-click Configure Device (iMPACT) from within Project Navigator, as shown in Figure20.

Processes: ;ﬂ
I- f}@ﬁenerate Programming File

- ~[2)@) Programming File Generation F
-1 Generate PROM, ACE, or JTA

Configure Device (MPACT]
ﬁ Update Bitstream with Processo
< |

5L Processes

Figure 20 : Double-Click to Invoke iMPACT

If the board is connected properly, the IMPACT programming software automatically

recognizes the three devices in the JTAG programming file, as shown in Figure 21. If not already
prompted, click the first device in the chain, the Spartan-3E FPGA, to highlight it. Right-click the
FPGA and select Assign New Configuration File. Select the desired FPGA configuration file and
click OK.



“CMPALT - C/data‘my designs/s3e_starter kit/s3e starter kitipl - [Boundary Scan]

EL Fle Edi Mow Oporabors Ophiors Outplt Debug Mindow Help

IPH s DBXx/eexase | 280 4K
i x|
Feadbounday Soan =
i B el enal
b TS elacidAP - | i
b= B9 D asktnn Corviou R,
llSutenalE o oy
IMPACT Modss e GetDevkeID e
| x| DO — (5ot Devvioe SignatureUsercode
Ayalable Op=ations e = Hecign I"-.E.'.-'- '::-nri.gl.'r'ar.!-:-n Fle..:
=5 Program

Figure 21 : Right-Click to Assign a Configuration File to the Spartan-3E FPGA

If the original FPGA configuration file used the default StartUp clock source, CCLK, iMPACT issues
the warning message shown in Figure 22. This message can be safely ignored. When downloading
via JTAG, the IMPACT software must change the StartUP clock source to use the TCK JTAG clock

source.

) WARMING MPACT (2254 - Shartup Chock bes bean changed ko kgl in e bitskeam shored 0 mamary,
¥ buat Ehe oeigingl Ditstreem file remsing unchanged,

Figure 22 : iMPACT Issues a Warning if the StartUp Clock Was Not CCLK

To start programming the FPGA, right-click the FPGA and select Program. The iMPACT software
reports status during programming process. Direct programming to the FPGA takes a few seconds to

less than a minute, depending on the speed of the PC’s USB port and the iMPACT settings.



MPALT - C:/data/my_designs/s3e_starter kit/s3e_starter_kitipf - [Boundary Scan]
EL Fle Edb iew Cpeeations Options Dutpik Debug Wircow  Hel

@ %

PEH aDBEXe2giin i 280
g

- Calfoundan Scan =
o BB el erial

- ETSaloihl AP - |
ea0esktop Corfigu. .

=] Svatemt |
aC3Ea0 =

itdPACT Hodes i i
toplewel Get Davice ID s

T2

5et Device Sonckure)Usercode.

|
Avalable Ope atios ae: :_]I Bizcign Pt Contiguration Fle...
b Py 2 !

Figure 23: Right-Click to Program the Spartan-3E FPGA

When the FPGA successfully programs, the iIMPACT software indicates success, as shown in Figure
24 The FPGA application is now executing on the board and the DONE pin LED (see Figure 17)
lights up.

MPACT - C:/datasmy_iesigns/s3e_starter kit s3e_starter_kitipl - [Boundary Scan]

2 Bl= Edit wew Operations Opbecs OOfput Debog window  Help

|*ELPREX i i | =amn ke
[ RiBoundary Scan &
Bl veSienal

- BB SelentMAP

B Neskiop Conligu .
i-[2] ystemaLe 5

e o3 xotlie nelokds
MFACT Modes I 1opievel.bt e T L

TOO

o

Ewnm Emimr.

Pre e

Awalzble Operchions ore =
g Frocram

e anhy

wi el Device (D

= ot Davica Signatur...

i Check Ideode 13

Figure 24 : iMPACT Programming Succeeded, the FPGA’s DONE Pin is High



CHAPTER -6
RESULTS

M 0 Ve ot o

LRGSR :X a0 B ASEYE 2 %A 28 0 &l il iET BTN G
A A

r
e S LT T S R T

0

i §

e e S B . ;
Fbard_sh: | I: | |
ERE Pl e — !
'*--Ellzs:.]::'.b{ S— |g
i o Y

B Ime g e (Y e

[E09 Sl

1zt bz T _I-I I T I T il mos i
I T Bl Y 1 - P 1 R [IRERCRIY 118 | 15 <
3 Bt les e ch ach Ehd bk RO A ALY TR T

Fig 6.1: simulation result for left shift



2101

E i 0000t TRECCCZD 1440 &0 AE0000C1 323000 |ABECCCTIN D)

Fig 6.2: Simulation results for right shift

447001 ¥ byl |

a5 . BOCCCIOIT i O 1T el 11 I WA 11111 R

Fig 6.3 Simulation results for circular left shift



MNow:
000 ne

otk

AL

& B doulli3T ¥ or W s B B 15 B

Fig 6.4: simulation results for circular right shift

clk

— cand’

rsi

Fig 6.5:Block diagram of Barrel shifter



Attt el
=k

-

bli

E
E

nanan

-
Al

-+

JNGEE

Fig 6.6: Register Transfer Logic for Barrel shifter

Fig6.7:technology schematic for barrel shifter



Modula Hama:
Targe! Dovico:
Product Yerason:

| Hio pait ok i-formatizh vas found.

Lugll. Uil zatiner:
Humzer ol § ie Fi- Fi:ps
Humnzen ol irpat LTz
Lopic Dianibution
Humzel ol aceupizd 5l ez

T
[ wwaamic dg 44

< Errars;
+ Wamings:

SE Al + Updated:

BARREL_SHFT Partition 5ummany

Iiin-.\wr.n-. |“‘I?’n|‘ll‘l‘l-iilu‘lmﬁr_l,l
Used Avaaladil
4 | 4856
216 1526

5 | 23

Fuaber al Limes conb=rang aclp e .-n-rl I-qr. “Hl 1-11

Fisaken ol G s rnr}-l'irg L-relabed -l
Tudal Humbes ol 4 mpul LUT~

Fumizel used 2 2 oo
Hun=ct ol bondod 0Bz
Hunzel ol GLC_Ka

e o e
' 3 | L85 |

245 |

]

] =
I 4

| nkal Fquivalent gale oot rnr hesan i =

| Addlrnd, 121 Jale ik re

Fig 6.8: Design summary for Barrel shtfter

e ——— = —_—

;.EJ. "] lll:-ﬂ:l:-!rmlt-'.-:l:llr.- Jar ka4 19144

ie‘?“’fﬁ@-_’%‘:-' -
53 X%
0 vt

B e

4 ¥

Wuﬂ-““-'-rl#.ﬂ.w"fin*-ﬂr-—-'p‘—:am

10 Hunc 14T Daanciion|  Luw

|

[ EN— I
! elici T

Eoi

i .. : i

|-
I

Fig 6.9 Pin assignment for barrel shifter

RET

Porfommance Summany

[Ho Emarz

[ Sondul 18 53713 2702

l.l.l.i.i.cdl.im

6% |

TNEL

|
.

2%
ey




SYNTHESIS REPORT
Release 9.11 - xst J.30
Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to ./xst/projnav.tmp
CPU :0.00/0.33 s | Elapsed : 0.00/ 0.00 s

--> Parameter xsthdpdir set to ./xst

CPU :0.00/0.33 s | Elapsed : 0.00/0.00 s

--> Reading design: barrel shft.prj

TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) Design Hierarchy Analysis
4) HDL Analysis
5) HDL Synthesis
5.1) HDL Synthesis Report
6) Advanced HDL Synthesis
6.1) Advanced HDL Synthesis Report
7) Low Level Synthesis
8) Partition Report
9) Final Report
9.1) Device utilization summary
9.2) Partition Resource Summary

9.3) TIMING REPORT

* Synthesis Options Summary



---- Source Parameters
Input File Name : "barrel_shft.prj"
Input Format : mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "barrel shft"
Output Format :NGC
Target Device : xc3s250e-4-tq144

---- Source Options

Top Module Name : barrel shft
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No
FSM Style : lut

RAM Extraction : Yes
RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto
Decoder Extraction : YES
Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction :YES
XOR Collapsing : YES
ROM Style : Auto

Mux Extraction : YES
Resource Sharing : YES

Asynchronous To Synchronous : NO



Multiplier Style

Automatic Register Balancing

---- Target Options
Add 10O Buffers

Global Maximum Fanout

: auto

: No

: YES
: 500

Add Generic Clock Buffer(BUFG) : 24

Register Duplication

Slice Packing

: YES

: YES

Optimize Instantiated Primitives : NO

Use Clock Enable
Use Synchronous Set

Use Synchronous Reset

Pack IO Registers into IOBs

Equivalent register Removal

---- General Options
Optimization Goal
Optimization Effort
Library Search Order
Keep Hierarchy

RTL Output

Global Optimization
Read Cores

Write Timing Constraints
Cross Clock Analysis
Hierarchy Separator
Bus Delimiter

Case Specifier

Slice Utilization Ratio

BRAM Utilization Ratio

:Yes
:Yes
:Yes
: auto

: YES

: Speed
1
: barrel _shft.lso
:NO

:Yes

: AllClockNets

: YES

:NO
:NO
o/

<>

: maintain

: 100
: 100



Verilog 2001 : YES
Auto BRAM Packing :NO
Slice Utilization Ratio Delta  : 5
HDL Synthesis Report

Macro Statistics

# Adders/Subtractors 1
32-bit adder 01

# Counters 01
32-bit up counter 01

# Registers 17
1-bit register 017

# Multiplexers : 76
1-bit 16-to-1 multiplexer : 60
1-bit 4-to-1 multiplexer 116

* Advanced HDL Synthesis *

Loading device for application Rf Device from file '3s250e.nph' in environment C:\Xilinx911.

Advanced HDL Synthesis Report



Macro Statistics

# Adders/Subtractors o1
32-bit adder 01

# Counters 01
32-bit up counter 01

# Registers 217
Flip-Flops 17

# Multiplexers 176
1-bit 16-to-1 multiplexer : 60
1-bit 4-to-1 multiplexer .16

Device utilization summary:

Selected Device : 3s250etq144-4

Number of Slices: 170 outof 2448 6%
Number of Slice Flip Flops: 49 outof 4896 1%
Number of 4 input LUTs: 309 outof 4896 6%
Number of 10s: 25

Number of bonded 10Bs: 25 outof 108 23%
Number of GCLKSs: 1 outof 24 4%

No Partitions were found in this design.



TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

------------------------ + e+t
Clock Signal | Clock buffer(FF name) | Load |
------------------------ =+ et
clk | BUFGP |33 |

sclk | NONE(i 9) |16 |
------------------------ + + +

INFO:Xst:2169 - HDL ADVISOR - Some clock signals were not automatically buffered by XST
with BUFG/BUFR resources. Please use the buffer type constraint in order to insert these buffers to

the clock signals to help prevent skew problems.

Asynchronous Control Signals Information:

------------------------ + e+t
Control Signal | Buffer(FF name) | Load |
------------------------ =+ et
NO(XST GND:G) | NONE(_9) |16 |

rst | IBUF | 16 |



Speed Grade: -4

Minimum period: 8.965ns (Maximum Frequency: 111.551MHz)
Minimum input arrival time before clock: 8.466ns
Maximum output required time after clock: 4.991ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock 'clk'
Clock period: 8.965ns (frequency: 111.551MHz)
Total number of paths / destination ports: 17953 / 66

Delay: 8.965ns (Levels of Logic = 34)
Total 8.965ns (6.625ns logic, 2.340ns route)
(73.9% logic, 26.1% route)

Timing constraint: Default period analysis for Clock 'sclk’
Clock period: 7.455ns (frequency: 134.138MHz)
Total number of paths / destination ports: 792/ 16




Delay: 7.455ns (Levels of Logic = 6)
Source: i 0 (FF)
Destination: i 1 (FF)
Source Clock:  sclk rising

Destination Clock: sclk rising

Data Path:1 Otoi 1
Gate Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)

FDCPE:C->Q 17 0.591 1.086 i 0(i 0)

LUT3:12->0 7 0.704 0.787 cond3<3> 5 (cond3<0> mmx outl7)

LUT3:11->0 2 0.704 0.526 cond3<I>11 (cond3<1>17)

LUT3:11->0 1 0.704 0.499 cond3<2>1131 (cond3<2>211)

LUT3:11->0 1 0.704 0.000 Mmux_i 1 _mux0000 5 (N1414)

MUXF5:10->0 1 0.321 0.000 Mmux_i 1 mux0000 3 f5 (Mmux i 1 mux0000 3 f5)
MUXF6:11->0 1 0.521 0.000 Mmux_i 1 _mux0000 2 f6 (i_1 _mux0000)

FDCPE:D 0.308 il

Total 7.455ns (4.557ns logic, 2.898ns route)

(61.1% logic, 38.9% route)

Timing constraint: Default OFFSET IN BEFORE for Clock 'sclk'
Total number of paths / destination ports: 854 / 32

Offset: 8.466ns (Levels of Logic = 7)
Source: cond3<0> (PAD)
Destination: i 1 (FF)

Destination Clock: sclk rising



Data Path: cond3<0>toi 1
Gate  Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)

IBUF:I->0 135 1.218 1.470 cond3 0 IBUF (cond3 0 IBUF)

LUT3:10->0 7 0.704 0.787 cond3<3> 5 (cond3<0> mmx outl7)

LUT3:11->0 2 0.704 0.526 cond3<I1>11 (cond3<1>17)

LUT3:11->0 1 0.704 0.499 cond3<2>1131 (cond3<2>211)

LUT3:11->0 1 0.704 0.000 Mmux_i 1 _mux0000 5 (N1414)

MUXF5:10->0 1 0.321 0.000 Mmux_i 1 mux0000 3 f5 (Mmux i 1 mux0000 3 f5)
MUXF6:11->0 1 0.521 0.000 Mmux_i 1 mux0000 2 f6 (i_1 mux0000)

FDCPE:D 0.308 il

Total 8.466ns (5.184ns logic, 3.282ns route)

(61.2% logic, 38.8% route)

Timing constraint: Default OFFSET OUT AFTER for Clock 'sclk’
Total number of paths / destination ports: 16/ 16

Offset: 4.991ns (Levels of Logic = 1)
Source: i 8 (FF)
Destination: dout<8> (PAD)

Source Clock:  sclk rising

Data Path: i_8 to dout<8>
Gate Net
Cell:in->out  fanout Delay Delay Logical Name (Net Name)




FDCPE:C>Q 21 0.591 1.128 i 8 (i 8)

OBUF:1->0 3.272 dout 8 OBUF (dout<8>)

Total 4.991ns (3.863ns logic, 1.128ns route)
(77.4% logic, 22.6% route)

CPU:11.44/11.81s|Elapsed: 11.00/11.00 s

-

Total memory usage is 156400 kilobytes

Number of errors : 0 ( 0 filtered)

Number of warnings : 3 ( 0 filtered)
Number of infos : 6 ( 0 filtered)



CONCLUSION:

Hence we have designed the IP Core for Barrel Shifter using VHDL. The simulation has been done
using ISE Simulator. The synthesis has been done using XILINX ISE 9.1i.

The bit file has been generated and the output is dumped on the FPGA Device (Spartan3E).

FUTURE SCOPE:

The design has been done for the 16-bit Barrel Shifter. The core can be used to design for further
designs of 32-bit , 64-bit and so on to be utilized in DSP Processors and any communication systems

like USB transmitters etc.

REFERENCES:

1. www.wikipedia.com

www.google.com

www.xilinx.com

www.digilent.com (for reference manual)
Digital Design Principles and Practices by John F. Wakerly, Fourth Edition
Advanced VHDL Design by J. Basker

A O i



