

Translucent Concrete

By Victoria Bailey

MEEN 3344-001

11:00-11:50 MWF

How is it Made?

- Mostly the same as regular concrete
- •Glass fibers are spread throughout the aggregate and cement mix.
- •Small layers of the concrete are poured on top of each other and infused with the fibers and are then connected
- Process is tedious and costly
- •Big reason why this product costs so much.

Two configurations of fibers:

1) Organic

1) Layered

What are its Properties?

- •Carries the same amount of light through a brick no matter how thick it is
- •The light carried maintains its original color
- Weighs about the same as conventional concrete
- •96% traditional aggregate and cement, 4% glass fibers
- •Can be manufactured in any color upon request
- Normally sold in bricks

Why does it Work?

- Based on Nano-Optics
- •Light passes as much light when tiny slits are placed directly on top of each other as when they are staggered
- Principal can carry because glass fibers in the concrete act like the slits and carry the light across

(a) electromagnetic field (EM) distribution around a single array of slits; (b) EM distribution around a double array of aligned slits; (d) EM distribution around a double array of staggered slits.

Is it Structurally Sound?

Yes,

It is comparable to classic concrete and has already been used in a variety of structures

Desks

Logos

Monumental Architecture

Lamp

Is it Expensive?

- Currently more expensive
- •Due to:
 - tedious manufacturing process
 - only made in a small factory in Hungary run by inventor Aron Losonsczi
- Possible production tradeoff to United States or Japan
- Maybe less expensive in future

Thickness	EXW Price	Minimum order quantity
[mm]	[EUR/m²]	[m²]
25	845,-	7
30	935,-	6
40	1105,-	5
50	1275,-	4
60	1455,-	3
80	1800,-	2,5
100	2140,-	2
150	3010,-	1
200	3880,-	1

Is it Worth it?

- Depends on the buyer and the project
- Adds an interesting property to a strong material
- •Could take fiber optics in a new direction
- Definitely looks cool nonetheless

Sources

Internet:

http://www.litracon.hu/

http://www.danubiusmagazin.hu/magazin/tortenelem/uvegbeton_e.html

Textbook:

Fundamentals of Materials Science and Engineering by William D. Callister Jr. and David G. Rethwisch Chapter 15

Technical Journal:

Optics and Photonics News September 2008 issue "Using Nano-Optics to Control the Phase of Light"