

"Coal, gas and oil will not be the three kings of the energy world for ever. It is no longer folly to look up to the sun and <u>wind</u>, down into the sea's waves"

Introduction

- Energy is a major input for overall socioeconomic development of any society
- The prices of the fossil fuels steeply increasing
- So renewable are expected to play a key role
- Wind energy is the fastest growing renewable
- Wind turbines are up to the task of producing serious amounts of electricity

Principles

Uneven heating of earth's surface and rotation

Map of world winds

Wind Power Density of India

Velocity with Height

Potential

Huge potential exists
 Available potential can contribute five times the world energy demand
 0.4% contribution to total energy

Installed Capacity (MW) in 2007

Available Potential in India

Installed Capacity (MW) in India

State wise potential in India, 2005

SI. No.	State	Gross Potential (MW)	Technical Potential (MW)	Installed Capacity (MW)
1.	Andhra Pradesh	8275	1920	121.1
2.	Gujarat	9675	1780	667
3.	Karnataka	6620	1180	847
4.	Kerala	875	605	2.0
5.	Madhya Pradesh	5500	845	58
6.	Maharashtra	3650	3040	1485
7.	Orissa	1700	780	2
8.	Rajasthan	5400	910	470
9.	Tamilnadu	3050	1880	3460
10.	WestBengal	450	450	1.6
11.	Other States	-		0.5
	Total	45195 MW	13390	7114 MW

Technology

Turbine Evolution

Mainly used for

• Generating Electricity

Two Types of Wind Turbines

Horizontal Axis Wind Turbine

Horizontal Axis Wind Turbine

VAWT [Vertical Axis Wind Turbine]

- Drag is the main force
 Nacelle is placed at the bottom
 Yaw mechanism is not required
 Lower starting torque
- Lower starting torque
- Difficulty in mounting the turbine
- Unwanted fluctuations in the power output

HAWT [Horizontal Axis Wind Turbine]

- Lift is the main force
- Much lower cyclic stresses
- Yaw mechanism is required
- 95% of the existing turbines are HAWTs
- Nacelle is placed at the top of the tower

Turbine design and construction

Blades

Material used

Typical length

Tower height

 Heights twice the blade length are found economical

Turbine Aerodynamics

Why Only Three

Tip speed ratio

Airfoil Shape

A Typical HAWT

Improvements

Concentrators

Future Wind Turbines

Wind Amplified Rotor Platform

The Modular WARPTM System Design

Disc type wind turbine

- Much more efficient than HAWT
- Requires less height
- Low noise

• Works in any wind direction

Economics

Determining Factors

- Wind Speed
- Turbine design and construction
- Rated capacity of the turbine
- Exact Location
- Improvements in turbine design
- Capital

Break Down Of Capital Cost

Energy Cost Trend

1979: 40 cents/kWh

2000: 4 - 6 cents/kWh

- Increased Turbine Size
- R&D Advances
- Manufacturing Improvements

2008: 2.1 – 3.4 cents/kWh

Economic Advantages

- Greater fuel diversity
- No delay in construction
- Low maintenance costs
- Reliable and durable equipment
- Additional income to land owners
- More jobs per unit energy produced
- No hidden costs

Cost Comparision

Future

Germany now and 2020

At present 10% of the country's energy is supplied by wind energy • By 2020 it is expected to go up to 26%

- Price of wind power is coming down
- There is enormous capacity
- Energy storage, however, is still a problem

Conclusion

- Wind energy is pollution free and nature friendly
- Wind energy has very good potential and it is the fastest growing energy source The future looks bright for wind energy because technology is becoming more advanced and windmills are becoming more efficient

THANK YOU

