Polarizing frequency of a fluid plasma antenna element

Michael Robinson*

1 Introduction

Plasma antennas are a new concept in adaptive antennas. They use the properties of low-
energy plasma to allow rapid adjustments of their optimal operating frequency. Some of
the earliest plasma antenna concepts appear in patents by Anderson, et. al. [1] [2] [4]
Experimental verification of plasma antenna properties has been done in [5], where they
also look at antenna efficiency, and in [8] using an exotic means of generating the plasma.

This paper uses the fluid plasma model developed in [6], and presents an expression for the
current distribution of a plasma antenna element. It then makes some comments regarding
the frequencies at which the antenna element is properly polarized. Although the results
are valid specifically for an element in the shape of a prism, the general solution procedure
will work for other geometries.

2 Basic Equations — Maxwell & Navier-Stokes

The plasma antenna model that will be described is that of a prism filled with a fluid plasma
(the plasma tube). The fluid plasma model idealizes the aggregate motions of individual
particles as the motion of a continuous, charged fluid. The motion of this charged fluid is
identified with the electric current density, which acts as a forcing term for electromagnetic
phenomena in the usual way. Similarly, electromagnetic fields can apply forces to the charged
fluid by way of the Lorentz force. [7] It is useful to consider small amplitude, sinosoidal
waves; even relatively high powered RF applications do not induce nonlinear plasma effects.
This results in a linearized, frequency-dependent system of Maxwell equations:
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For each type of charged particle j, the following fluid equations hold:
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and
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In the above, w represents the angular frequency of the waves. NN; represents the bulk
density of the charged particles, n; is perturbed particle density, u; represents the fluid
velocity, ¢; represents the charge of a single particle of type j, likewise m; represents the
mass of a single charged particle, and c; represents their thermal acoustic speeds.

3 Velocity elimination

The system of equations describing a fluid plasma can be simplified by eliminating the fluid
velocity terms. This is done by solving (5) for u;, which yields
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This can be used to substitute for the velocity terms appearing in (2) and (4). Combining
Faraday’s Law and the Ampere-Maxwell Law in the usual way, a new system is obtained:
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with for each type of charged particle, j
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(The wy; terms represent the “plasma frequencies” of each charged particle type, and are
defined as in [7] as
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Notice that in this new formulation, the forcing terms for the acoustic waves are entirely
acoustic, while the forcing for the electromagnetic waves is also entirely acoustic. In the
absense of a boundary, electromagnetic waves will not induce acoustic waves. However,
acoustic waves will be accompanied by a wave-like electric field. [6] The introduction of a
boundary allows the transfer of energy betweeen both types of waves.



4 Rigid boundary condition for each type of particle

The equation for the fluid velocity (6) points to a natural boundary condition to impose
along the inside of the plasma tube. Acoustic waves inside the tube remain inside, and
cannot couple into acoustic waves outside the tube. This restricts the normal component of
the fluid velocity to be zero on the boundary of the tube, and yields
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Looking at the form of (10), it is clear that acoustic and electromagnetic waves can transfer
energy along the boundary.

5 One-component Simplification

The plasma described in the previous sections consists of an arbitrary number of charged
particle types. Typically, the plasmas used in an antenna will contain only two types:
electrons and ions. The ions are more massive than the electrons (mjon >> Mejectron ), but
have opposite charge (¢ion = —Qelectron). Since plasmas are quasineutral, there are roughly
the same number of electrons as ions (Nion, = Neteetron)- [7) I Cion = Celectron i (10),
then it is clear that |n;on| < |Neiectron|- This means that the electron-related effects of the
plasma will dominate, and it is safe to take n;,, =~ 0 in (7), (8), and to neglect it altogether
in (10).

6 Solution

Consider the case of a right prism-shaped plasma tube. That is, consider a region {(z,y, 2)|0 <
z < L and (z,y) € R C R?}. In order to generate the plasma, typically high-voltage elec-
trodes must be placed at either end of the tube. (See [3] or [8] for other techniques for
generating plasma for antennas.) These electrodes will be represented by placing conduc-
tive boundaries at z = 0 and z = L. Away from these conductors, (8) can be solved to yield
solutions in the form of sums of terms like

Nelectron = W (2, y) cos (%z), where p € Z. (11)

In simple geometries, (such as a rectangular prism) it is easy to solve for the electric field
in the plasma by observing that Vnejectron provides the forcing for the electric field. This
splits the electric field solution into a particular solution (from the forcing terms) and a
homogeneous solution (to satisfy (10)). Observe that there are particular frequencies where
W (x,y) is a harmonic function on R. These occur when
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Further, if there is no externally applied electric field, then W (x,y) = const. Then, it is
apparent that the forcing term in (7) drives the electric field sinosoidally in the z-direction
only, and that (10) removes any normal component of the electric field on the boundary.
The plasma tube has become an antenna polarized in the z-direction.

7 Discussion

From (12), the plasma antenna is tunable. That is, it behaves much like a conventional
antenna near a discrete set of frequencies. These frequencies can be adjusted by changing
the thermal acoustic speed (Ceiectron) and the plasma frequency (wp cicctron)-

Away from these polarizing frequencies, the specific distribution of charges and electric field
will depend on the geometry of the tube. The charge distribution will no longer be uniform
in the z = const planes. This will induce some component of the electric field normal to the
boundary. The antenna will not be polarized, and therefore loses some radiating efficiency.

8 Future Work

Although this paper describes how fields and charges inside a plasma antenna behave, little
theoretical work has been done to describe the radiation pattern of fluid plasma antennas.
Clearly, when (12) is satisfied, this reduces to a relatively standard antenna calculation.
However, the off-frequency patterns have not been extensively studied.

The condition ¢;on & Celectron €liminates the ion interactions in the leading order approx-
imations, but it is conceivable that this will not hold in general. Removing this condition
requires one to solve the full system of equations, and is more complicated.
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