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Overview of topic

• Wind resources
– Origin of the wind
– Estimating available wind power

• How a horizontal axis wind turbine (HAWT) works
– Power coefficient
– Betz relation
– Aerofoil concept
– Blade element–momentum theory
– Brakes, gearbox, generators
– Aesthetic considerations
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Why does the wind blow?
• Differential heating of the earth’s surface by the sun.

incoming radiation

outgoing radiation

Ocean currents
and wind

equatorS.pole N.pole
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Convection cells

equatorS.pole N.pole
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Coriolis force

Hadley cell
convection

Speed at
earth’s surface:

600 km/h

500 km/h

Earth’s rotation
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Secondary and tertiary circulations
• Secondary

– Hurricanes (tropical cyclone)
– Extratropical cyclone
– Monsoon circulation

• Tertiary e.g.
– Land/sea breezes
– Mountain/valley breezes
– Thunderstorms
– Tornadoes
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Example of tertiary circulation:
valley and mountain winds
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Types of wind and wind energy
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Turbulence and gusts
Causes vibrations and fatigue loadings



10

Effect of height

Rough surface, characterised
by parameter z0 , e.g.
Grass z0 = 0.01 m
Forest z0 = 0.5 m
City z0 = 3 m

z0

speed u(z)=U ln(z/z0)

Example:
Compare u at 3 m and 30m
over grass
u(30)/u(3)=ln(30/0.01)/ln(3/0.01)

=1.40
Height z
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Measure-correlate-predict
• Method for assessing wind resource at 

a site, based on measurements from a 
nearby weather station

• Measurements are taken at the site 
over, say, 6 months

• These are correlated with those taken at 
the weather station

• The correlation is used to assess long 
term wind resource based on records 
from weather station
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Power in the wind

Mass flow m = ρAv

Kinetic energy of a portion of
the flowing air of mass δm is ½ δm v2

Air travelling at uniform velocity v
Density ρ

Area A

The rate of energy flow (ie. power) Pw for the whole flow is 

Pw = ½ m v2 = ½ ρAv3
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Power coefficient
Air travelling at uniform velocity v
Density ρ

Area A

Mechanical 
power out PrWind 

power in Pw

Cp = Pr / Pw

Define power coefficient Cp
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Betz limit

• A wind turbine cannot stop the wind completely (where 
would the air go?)

• The flow is spread out as it slows down
• Therefore not all of the power can be extracted
• The limit to how much power can be extracted was 

determined by Betz as Cp=0.59
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Betz limit: assumptions
• Frictionless, incompressible and steady flow: 

use Bernoulli equation p + ½ρ v2 = constant
• Velocity varies in direction of rotor axis:

1-D theory
• The work done by the fluid passing through 

the rotor is all converted into useful work 
extracted from the turbine 
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Betz limit:details

u1 u2=u3 u4

Thrust T

p1 p2 p3 p4=p1
Air flow
velocity u1

Rotor area A

Bernoulli: 
p1 + ½ρu1

2= p2 + ½ρu2
2             p3 + ½ρu3

2= p4 + ½ρu4
2

Momentum balance T = m(u1 - u4) = ρu2A(u1- u4)

Force balance T = A(p2 – p3)
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Betz: Details (…cont)
Subtract
using p1=p4
and u2=u3

p1 + ½ρu1
2= p2 + ½ρu2

2

p2 - p3= ½ρ(u1
2 – u4

2)

p3 + ½ρu3
2= p4 + ½ρu4

2

T = A(p2 – p3)

Substitute
For p2-p3

T = ½ρA(u1
2 – u4

2)

Eliminate T
T = ρu2A(u1- u4) u2 = ½ (u1 + u4)

…showing that the air velocity u2 at the rotor is the
mean of the upstream and downstream velocities
u1 and u4
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Betz limit: Axial induction factor
Introduce the axial induction factor ‘a’ as a measure of
the decrease in axial air velocity through the turbine.

Define: u2 = u1(1 - a)

The last slide showed that the velocity drops by the same
amount before and after the turbine. Therefore:

u4 = u1(1 - 2a)

Now we can write the thrust on the rotor in terms of 
u1 and a:

T = 2 ρAu1
2 a (1-a)
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Betz limit: conclusion
The rate at which work is transferred to the rotor Pr is 
given by the thrust times the velocity:

Pr = T u2 = ½ ρAu1
3 4a (1-a)2

From the definition of power coefficient (slide 13)

At a = 1/3, a maximum value of Cp occurs, known as the 
Betz limit

The corresponding thrust is 

Cp = 4a(1-a)2

Cp = 16/27=0.593

T=  (4/9) ρAu1
2
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Aerofoil

• Air flows more quickly over the top surface than 
the bottom surface, resulting in a pressure 
difference and lift

• The lift on an aerofoil is several times the drag

Air flow

Lift

drag fast

slow
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Aerofoils: Angle of attack and stall
• As the angle of attach increases, lift increases 

until stall occurs:

stall
Angle of attack

u

Lift coefficient
CL defined so that:

Lift = ½ ρu2 CL A

where A is the area of the aerofoil
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Aerofoils: Stall

No stall

SeparationStall
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Blade-element momentum theory
Designing the ideal rotor

• Combine the Betz theory and aerofoil 
theory to determine the shape of the 
ideal rotor

• Conditions will vary from the hub to the 
outside of the rotor, so we imagine the 
blade as consisting of small radial 
element each δr long
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Blade element

δr
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Ideal rotor : Relative velocity and lift
The tangential velocity of the blade is usually many 
times the wind speed. This gives rise
to a large lift force.

Approach
velocity u2

Tangential velocity uT

φpitch angle

Lift

Relative velocity

urel=√(uT
2 + u2

2)
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Tip speed ratio
• Defined as speed of the blade tip divided by wind speed

λ = uT/u1 or uT= λ u1

At a radius r:
uT=(r/R) λ u1

where R is the radius of the whole blade
• We will also make use of the Betz relation assuming the 

ideal situation of a = 1/3:
u2=(2/3)u1

• We can now express the pitch angle as tanφ = u2/uT and 
therefore









=

λ
φ

)/(3
2arctan
Rr
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Thrust on the section of the rotor

• We can apply the Betz expression for 
thrust to just an annular section of the 
rotor.

δr

δT=  (4/9) ρ 2πr δr u1
2

T=  (4/9) ρAu1
2

see slide 19
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Ideal rotor : Relative velocity and lift

Approach
velocity u2

urel=√(uT
2 + u2

2) = u2 / sin φ
Relative velocity

φ

Lift force
δFL= ½CLρurel

2 δA

Tangential force
δFT = δFL sin φ

φ

Thrust
δT = δFL cos φ

c

= ½ CL ρurel
2 δA cosφ

Equate with expression
for δT from last slide,
setting δA = B δr c
(B is number of blades)
and use u2=(2/3)u1

tan φ sin φ = CLBc/4πr

Tangential velocity uT
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Designing the ideal rotor: 
Results

• Combining this with the expression for tan φ
from slide 26 gives the following expression 
for aerofoil chord length in the direction of the 
pitch angle:

rLBC
c

λ
φπ

3
sin8

=

And from slide 27 we have the corresponding
ideal pitch angle:









=

λ
φ

)/(3
2arctan
Rr
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Ideal rotor design: example
Tip speed ratio λ = 7
Radius R = 5 m
Number of blades B = 3
Lift coefficient CL=1

8

0.24
0.8

0.190.310.460.86Chord c (m)

7111527Pitch φ (°)

1.00.60.40.2r/R

tip
hub
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Causes of non-ideal performance

• Friction on blades (especially if dirty) 
decreases drag and increases lift

• Rotation, vortices and turbulence in wake 
correspond to wasted energy

• Tip losses: air takes a short cut around tip of 
blade

• Tower shadow
• Fixed speed operation (or limited speed 

range): mismatch with wind speed
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Putting on the brakes
• A wind turbine can only absorb so much power. 

It has to cope with very high wind speeds 
occasionally.

• Therefore brakes are needed (also for safety)
• Stall braking

– Passive stall (no pitch control)
– Pitch controlled stall or feathering

• Mechanical brake on shaft: hydraulic disc brake
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Generators
1. Synchronous generator:
Fixed speed determined by grid

Magnetic field
angle θf

Rotor
angle θr

Torque proportional to lag θr - θf

Acts like a spring → resonances

2. Induction generator:
Almost fixed speed determined by grid

Magnetic field
speed ωf

Rotor
speed ωr

Torque proportional to slip speed = ωr - ωf

Acts like a damper → no resonances
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Gearing requirements: 
generator

• The speed of the induction generator only 
varies over a restricted range

• The approximate speed is determined by the 
mains frequency and number of poles e.g. for 
50 Hz
– 2 poles → 3000 rpm (50Hz)
– 4 poles → 1500 rpm 
– 8 poles → 750 rpm
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Gearing requirements: rotor

0

0.1

0.2

0.3
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Tip speed ratio λ
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dragstall
Optimum
λ ≃ 7

Example: wind speed 10 m/s, radius = 26 m
Tip speed = 7 x 10 = 70 m/s, giving 25 rpm 

•Therefore substantial gearing is needed e.g. 1:30 
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Wind turbine nacelle

Gearbox

Generator

Rotor

Mechanical Brake

Tower

Pitching mechanism
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Variable speed machines
Ring

generator Rectifier Inverter
AC DC Grid
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Aesthetic considerations

Generally favour:

• Slowly rotating blades
• 3 blades better than 2
• Smooth round towers 

preferred to lattices
• Not too much noise!
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Conclusions
• Wind is primarily generated by equator to pole energy 

gradients combined with the earth’s rotation 
• Wind speed increases significantly with height
• The power in the wind varies with the cube of wind speed
• The Betz theory establishes a limit of 16/27=0.59 to 

power coefficient
• The wind turbine blade is an aerofoil
• The tip speed is greater than the wind speed
• Lift is created as the blade slices through the wind – the 

tangential component of the lift is what drives the turbine
• You also need a gearbox, a generator and a tower to put 

it all on
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