
Design alternatives for barrel shifters

Matthew R. Pillmeier
Rushmore Processor 2
Unisys Corporation
Blue Bell, PA 19424

Michael J. Schulte and E. George Walters III
Computer Architecture and Arithmetic Laboratory

Computer Science and Engineering Department
Lehigh University

Bethlehem, PA 18015, USA

ABSTRACT

Barrel shifters are often utilized by embedded digital signal processors and general-purpose processors to ma-
nipulate data. This paper examines design alternatives for barrel shifters that perform the following functions:
shift right logical, shift right arithmetic, rotate right, shift left logical, shift left arithmetic, and rotate left. Four
different barrel shifter designs are presented and compared in terms of area and delay for a variety of operand
sizes. This paper also examines techniques for detecting results that overflow and results of zero in parallel
with the shift or rotate operation. Several Java programs are developed to generate structural VHDL models
for each of the barrel shifters. Synthesis results show that data-reversal barrel shifters have less area and mask-
based data-reversal barrel shifters have less delay than other designs. Mask-based data-reversal barrel shifters
are especially attractive when overflow and zero detection is also required, since the detection is performed in
parallel with the shift or rotate operation.

Keywords: barrel shifters, rotators, masks, data-reversal, overflow detection, zero flag, computer arithmetic.

1. INTRODUCTION

Shifting and rotating data is required in several applications including arithmetic operations, variable-length
coding, and bit-indexing. Consequently, barrel shifters, which are capable of shifting or rotating data in a single
cycle, are commonly found in both digital signal processors and general-purpose processors. Several patents [1–
10] and research articles [11–15] have been written on efficient designs and implementations for barrel shifters.
In [16], several 32-bit barrel shifters are compared in terms of delay, power, and power-delay product.

This paper examines design alternatives for barrel shifters that perform the following operations: shift right
logical, shift right arithmetic, rotate right, shift left logical, shift left arithmetic, and rotate left. These designs
are optimized to share hardware for different operations. Techniques are also presented for detecting results
that overflow and results of zero in parallel with the shift or rotate operation. Section 2 describes the basic
shift and rotate operations and gives examples of each operation. Section 3 presents designs for several types
of barrel shifters. Section 4 gives area and delay estimates for each type of barrel shifter as the operand size
varies. Section 5 presents conclusions. Further details on the designs presented in this paper are given in [17].

2. SHIFT AND ROTATE OPERATIONS

In this paper, we define A to be the input operand, B to be the shift/rotate amount, and Y to be the
shifted/rotated result. We define A to be an n-bit value, where n is an integer power of two. Therefore,
B is a log2(n)-bit integer representing values from 0 to n − 1. The barrel shifters presented in this paper
perform the following six operations: shift right logical, shift right arithmetic, rotate right, shift left logical,
shift left arithmetic, and rotate left. Table 1 gives an example for each of these operations. In this table, the
bit vector for A is denoted as a7a6a5a4a3a2a1a0 and the shift/rotate amount, B, is 3 bits. As illustrated in this
table:



Operation Y

3-bit shift right logical 0 0 0 a7a6a5a4a3

3-bit shift right arithmetic a7a7a7a7a6a5a4a3

3-bit rotate right a2a1a0a7a6a5a4a3

3-bit shift left logical a4a3a2a1a0 0 0 0

3-bit shift left arithmetic a7a3a2a1a0 0 0 0

3-bit rotate left a4a3a2a1a0a7a6a5

Table 1. Shift and rotate examples for A = a7a6a5a4a3a2a1a0 and B = 3.

3-bit Opcode
left rotate arithmetic Operation

0 0 0 shift right logical

0 0 1 shift right arithmetic

0 1 X rotate right

1 0 0 shift left logical

1 0 1 shift left arithmetic

1 1 X rotate left

Table 2. Operation control bits.

• A B-bit shift right logical operation performs a B-bit right shift and sets the upper B bits of the result
to zeros.

• A B-bit shift right arithmetic operation performs a B-bit right shift and sets the upper B bits of the
result to an−1, which corresponds to the sign bit of A.

• A B-bit rotate right operation performs a B-bit right shift and sets the upper B bits of the result to the
lower B bits of A.

• A B-bit shift left logical operation performs a B-bit left shift and sets the lower B bits of the result to
zeros.

• A B-bit shift left arithmetic operation performs a B-bit left shift and sets the lower B bits of the result
to zeros. The sign bit of the result is set to an−1.

• A B-bit rotate left operation performs a B-bit left shift and sets the lower B bits of the result to the
upper B bits of A.

3. BARREL SHIFTER DESIGNS

This section discusses barrel shifter designs. Basic shifter and rotator designs are described first in Section 3.1.
Mux-based data-reversal barrel shifters, mask-based data-reversal barrel shifters, mask-based two’s complement
barrel shifters, and mask-based one’s complement barrel shifters are then discussed in Sections 3.2 through 3.5.
In the following discussion the term multiplexor refers to a 1-bit 2-to-1 multiplexor, unless otherwise stated.
The operation performed by the barrel shifters is controlled by a 3-bit opcode, which consists of the bits left,
rotate, and arithmetic, as summarized in Table 2. Additional control signals, sra and sla, are set to ‘1’ when
performing shift right arithmetic and shift left arithmetic operations, respectively.

3.1. Shifters and Rotators

An n-bit logarithmic barrel shifter uses log2(n) stages [1, 2]. Each bit of the shift amount, B, controls a different
stage of the shifter. The data into the stage controlled by bk is shifted by 2k bits if bk = 1; otherwise it is not



Figure 1. 8-bit logical right shifter.

Figure 2. 8-bit right rotator.

shifted. Figure 1 shows the block diagram of an 8-bit logical right shifter, which uses three stages with 4-bit,
2-bit, and 1-bit shifts. To optimize the design, each multiplexor that has ‘0’ for one of its inputs can be replaced
by a 2-input and gate with the data bit and bk as inputs.

A similar unit that performs right rotations, instead of right shifts, can be designed by modifying the
connections to the more significant multiplexors. Figure 2 shows the block diagram of an 8-bit right rotator,
which uses three stages with 4-bit, 2-bit, and 1-bit rotates. The right rotator and the logical right shifter supply
different inputs to the more significant multiplexors. With the rotator, since all of the input bits are routed
to the output, there is no longer a need for interconnect lines carrying zeros. Instead, interconnect lines are
inserted to enable routing of the 2k low order data bits to the 2k high order multiplexors in the stage controlled
by bk. Changing from a non-optimized shifter to a rotator has no impact on the theoretical area or delay. The
longer interconnect lines of the rotator, however, can increase both area and delay.

The logical right shifter can be extended to also perform shift right arithmetic and rotate right operations by
adding additional multiplexors. This approach is illustrated in Figure 3, for an 8-bit right shifter/rotator with
three stages of 4-bit, 2-bit, and 1-bit shifts/rotates. Initially, a single multiplexor selects between ‘0’ for logical
right shifting and an−1 for arithmetic right shifting to produce s. In the stage controlled by bk, 2k multiplexors
select between s for shifting and the 2k lower bits of the data for rotating.



Figure 3. 8-bit mux-based right shifter/rotator.

A right shifter can be extended to also perform left shift operations by adding a row of n multiplexors both
before and after the right shifter [4]. When a left shift operation is performed, these multiplexors reverse the
data into and out of the right shifter. When a right shift operation is performed, the data into and out of the
shifter is not changed. An 8-bit data-reversal logical shifter is shown in Figure 4.

3.2. Mux-based Data-Reversal Barrel Shifters

The techniques described previously can be combined to form a barrel shifter that performs shift right logical,
shift right arithmetic, rotate right, shift left logical, shift left arithmetic, and rotate left. This approach is shown
in Figure 5. Initially, a row of n multiplexors reverses the order of the data when left = 1 to produce Â. Then,
an n-bit right shifter/rotator performs the right shift or rotate operation on Â to produce Ŷ . Finally, a row of
n multiplexors reverses the data when left = 1 to produce the final result Y .

The design presented in Figure 5, called a mux-based data-reversal barrel shifter, also detects overflow and
results of zero. Overflow only occurs when performing a shift left arithmetic operation and one or more of the
shifted-out bits differ from the sign bit. A method for detecting overflow in parallel with the shift operation is
shown in Figure 6. In each stage, the bits that are shifted out are xored with the sign bit; when no bits are
shifted out, the sign-bit is xored with itself ∗. The outputs of the xor gates are then ored together to produce
the overflow flag, which is ‘1’ when overflow occurs. An additional multiplexor sets ŷ0 to â0 when sla = 1. The
zero flag, which is ‘1’ when Y is zero, is obtained from the logical nor of all of the bits in Ŷ . One disadvantage
of this mux-based data-reversal barrel shifter is that the zero flag is not computed until Ŷ is produced.

3.3. Mask-based Data-Reversal Barrel Shifters

Another approach for designing barrel shifters with the same functionality as the one presented in Figure 5
is to use a mask-based data-reversal approach [6]. With this approach, the primary unit that performs the
operations is a right rotator and the data-reversal technique is used to support left shift and rotate operations.
In parallel with the data reversal and rotation, masks are computed that allow logical and arithmetic shifting
to also be performed. With the mask-based data-reversal approach, the overflow and zero flags are computed

∗For shift left arithmetic, the sign-bit corresponds to â0, since the data is reversed.



Figure 4. 8-bit data-reversal logical shifter.

Figure 5. Mux-based data-reversal barrel shifter.



Figure 6. 8-bit right shifter/rotator with overflow flag.

while reversing and rotating the data. A mask-based data-reversal barrel shifter is shown in Figure 7. With
this type of barrel shifter, several masks are computed in parallel with the data reversal and rotation. The first
mask that is computed is the F mask, which contains B leading zeros and n−B trailing ones. For example, if
B = 3 and n = 8, then F = 00011111. The design of an 8-bit F mask generator is shown in Figure 8. When the
F mask is anded with a rotate right result, a shift right logical result is produced. To facilitate both rotating
and shifting, each bit of the F mask is ored with the rotate signal to produce the P mask. Thus,

pi = fi + rotate (0 ≤ i ≤ n− 1) (1)

which sets P to all ones for rotations. The temporary result, T , before the final data reversal, is computed as:

t0 = ŷ0 · sla + sla · an−1 (2)
ti = ŷi · pi + s · pi (1 ≤ i ≤ n− 1) (3)

where s = sra · an−1.

One advantage of the masked-based data-reversal barrel shifter is that the overflow and zero flags are both
computed while the data is being rotated [7]. The zero flag is calculated using an n-bit zero mask, Z, which
masks out any bits that do not appear in the final result. Z is computed as

z0 = pn−1 + sla (4)
zi = sla · pn−1−i + sla · pn−1 (1 ≤ i ≤ n− 1) (5)

After the Z mask is computed, it is bit-wise anded with Â, and the resulting n bits are nored to compute
the zero flag. To calculate the overflow flag, the sign bit, an−1, is xored with the n− 1 remaining bits of A to



Figure 7. Mask-based data-reversal barrel shifter.

Figure 8. 8-bit F mask generator.



Figure 9. 8-bit overflow calculation.

determine which bits differ from the sign bit [8]. The (n− 1)-bit result from this operation is then anded with
the complement of the (n− 1) leading bits of the F mask. Finally, these bits are ored together and the result
is anded with sla to produce the overflow flag. This approach is shown in Figure 9 for n = 8.

3.4. Mask-based Two’s Complement Barrel Shifters

Another approach for designing mask-based barrel shifters takes advantage of the fact that a B-bit left rotate
is equivalent to an (n−B)-bit right rotate [5]. When n is an integer power of two, n − B corresponds to the
two’s complement of B. Thus, when a left shift or rotate operation is performed, the two’s complement of B is
used as the shift amount, which eliminates the multiplexors needed to reverse the input and output data.

A masked-based two’s complement barrel shifter is shown in Figure 10. The F mask is computed using the
technique presented in Section 3.3, except B̂ is used instead of B. When right shifts are performed, the F mask
is used directly. When left shifts are performed, the complement of the F mask is used. When performing
rotate operations or when B̂ = 0, the P mask is set to all ‘1’s. Thus, the P mask is now computed as

pi = left⊕ fi + rotate + bzero (0 ≤ i ≤ n− 2) (6)
pn−1 = left · fn−1 + sla · left · fn−1 + rotate + bzero (7)

where bzero = 1 when B̂ = 0. Y is computed as

yi = ŷi · pi + s · pi (0 ≤ i ≤ n− 2) (8)
yn−1 = (ŷn−1 · pn−1 + s · pn−1) · sla + sla · an−1 (9)

where s = sra · an−1. Z is computed as

zi = sla · pn−i−2 + sla · pn−i−1 (0 ≤ i ≤ n− 1) (10)

After the Z mask is computed, it is bit-wise anded with A, and the resulting n bits are nored to produce the
zero flag. The overflow flag is still computed using the technique shown in Figure 9, with F replaced by P .

3.5. Mask-based One’s Complement Barrel Shifters

One disadvantage of mask-based two’s complement barrel shifters is the need to perform a carry-propagate
addition to obtain the two’s complement of B when performing left shifts and rotates. This carry propagation
can be eliminated by instead using the one’s complement of B for left shifts and rotates, and making minor
modifications to the rotator and mask generation logic [3]. This approach is shown in Figure 11. The rotator is



Figure 10. Mask-based two’s complement barrel shifter.

modified by adding a row of multiplexors that performs a 1-bit rotate and a row of xor gates that complements
B for left shifts and rotates. Since it is no longer necessary to test if B̂ = 0, P is computed as

pi = left⊕ fi + rotate (0 ≤ i ≤ n− 1) (11)
pn−1 = left · fn−1 + sla · left · fn−1 + rotate (12)

Z is computed as

zi = sla · pn−i−2 + sla · pn−i−1 (0 ≤ i ≤ n− 2) (13)
zn−1 = sla + sla · p0 (14)

The rest of the unit is identical to the mask-based two’s complement barrel shifter.

4. AREA AND DELAY ESTIMATES

To obtain area and delay estimates for the designs presented in this paper, several Java programs were written
to generate structural VHDL for each barrel shifter, given the input operand size. These programs were used
to generate 8, 16, 32, 64, and 128-bit barrel shifters, which were first simulated to verify functionality and then
synthesized using IBM’s CU-11 0.11 micron CMOS standard cell library, with copper interconnect [18]. Each
design was synthesized to optimize for delay.

Tables 3 and 4 show area estimates in equivalent gates and delay estimates in nanoseconds for each barrel
shifter. As illustrated in Table 3, either the mux-based data-reversal or mask-based data-reversal designs have
the lowest area, depending on the operand size. Table 4 shows that mask-based data-reversal barrel shifters
require less delay than the other barrel shifters for all operand sizes examined. They are faster than the mux-
based data-reversal barrel shifters, since they compute the zero and overflow flags in parallel with the rotate
operation and they do not have additional multiplexor delays for selecting between shift and rotate operations.



Figure 11. Mask-based one’s complement barrel shifter.

Operand Size
Barrel Shifter 8 16 32 64 128

Mux-based Data-Reversal 1308 2731 6416 14242 30990
Mask-based Data-Reversal 1226 3180 6141 14488 31424
Mask-based Two’s Complement 1958 3908 8827 17657 36592
Mask-based One’s Complement 1926 4507 9825 20247 40453

Table 3. Total area estimates in equivalent gates.

Operand Size
Barrel Shifter 8 16 32 64 128

Mux-based Data-Reversal 0.68 0.83 1.08 1.30 1.46
Mask-based Data-Reversal 0.61 0.75 0.94 1.06 1.27
Mask-based Two’s Complement 0.89 1.03 1.19 1.41 1.67
Mask-based One’s Complement 0.86 1.08 1.22 1.44 1.74

Table 4. Worst case delay estimates in nanoseconds.



5. CONCLUSIONS

This paper has examined four barrel shifter designs: mux-based data-reversal, mask-based data-reversal, mask-
based two’s complement, and masked-based one’s complement. Area and delay estimates, based on synthesis
of structural level VHDL, indicate that data-reversal barrel shifters have less area than two’s complement or
one’s complement barrel shifters and that mask-based data-reversal barrel shifters have less delay than the other
designs. As the operand size increases, the delay of the shifters increases as O(log(n)) and their area increases
as O(n log(n)).

Acknowledgment

This material is based upon work supported by the IBM Faculty Partnership Program and the National Science
Foundation under Grant No. 9703421. Any opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of IBM or the National Science
Foundation.

REFERENCES
1. M. Seckora, “Barrel Shifter or Multiply/Divide IC Structure,” U.S. Patent 5,465,222, November 1995.
2. J. Muwafi, G. Fettweis, and H. Neff, “Circuit for Rotating, Left Shifting, or Right Shifting Bits,” U.S.

Patent 5.978,822, December 1995.
3. A. Yamaguchi, “Bidirectional Shifter,” U.S. Patent 5,262,971, November 1993.
4. A. Ito, “Barrel Shifter,” U.S. Patent 4,829,460, May 1989.
5. T. Thomson and H. Tam, “Barrel Shifter,” U.S. Patent 5,652,718, July 1997.
6. F. Worrell, “Microprocessor Shifter using Rotation and Masking Operations,” U.S. Patent 5,729,482, March

1998.
7. G. F. Burns, “Method for Generating Barrel Shifter Result Flags Directly from Input Data,” U.S. Patent

6,009,451, December 1999.
8. H. S. Lau and L. T. Ly, “Left Shift Overflow Detection,” U.S. Patent 5,777,906, July 1998.
9. M. Diamondstein and H. Srinivas, “Fast Conversion Two’s Complement Encoded Shift Value for a Barrel

Shifter,” U.S. Patent 5,948,050, September 1999.
10. K. Dang and D. Anderson, “High-Speed Barrel Shifter,” U.S. Patent 5,416,731, May 1995.
11. R. Pereira, J. A. Mitchell, and J. M. Solana, “Fully Pipelined TSPC Barrel Shifter for High-speed Appli-

cations,” IEEE Journal of Solid State Circuits, vol. 30, pp. 686–690, June 1995.
12. S.-J. Yih, M. Cheng, and W.-S. Feng, “Multilevel Barrel Shifter for CORDIC Design,” Electronics Letters,

vol. 32, pp. 1178–1179, June 1996.
13. P. A. Beerel, S. Kim, P.-C. Yeh, and K. Kim, “Statistically Optimized Asynchronous Barrel Shifters for

Variable Length Codecs,” in Proceedings of the International Symposium on Low Power Electronics and
Design, pp. 261–263, 1999.

14. V. Milutinovic, M. Bettinger, and W. Helbig, “Multiplier/Shifter Design Tradeoffs in a 32-bit Micropro-
cessor,” IEEE Transactions on Computers, vol. 38, pp. 874–880, June 1989.

15. G. M. Tharakan and S. M. Kang, “A New Design of a Fast Barrel Switch Network,” IEEE Journal of
Solid-State Circuits, vol. 28, pp. 217–221, February 1992.

16. K. P. Acken, M. J. Irwin, and R. M. Owens, “Power Comparisons for Barrel Shifters,” in Proceedings of
the International Symposium on Low Power Electronics and Design, pp. 209–212, 1996.

17. M. R. Pillmeier, “Barrel Shifter Design, Optimization, and Analysis,” Master’s thesis, Lehigh University,
January 2002.

18. IBM, Blue Logic Cu-11 ASIC, June 2002. Available from http://www-3.ibm.com/chips/products/asics
/products/cu-11.html.


