ENERGY EFFICIENT MOTORS

Crompton Greaves Ltd., a pioneering leader with more than 60 years of experience and expertise in the management of electric energy, is today India's largest private sector enterprise in electrical engineering, with a turnover exceeding Rs.1800 crores. The Company has 28 manufacturing units, 19 branch offices and a network of dealers, distribution and service centres all over India.

LT Motors division, for the past six decades has lead the industry in developing motors that deliver greater performance and reliability while using less electricity.

The motors are indigenously manufactured at the Crompton Greaves State-of-the-art plant at Ahmednagar thus consistently ensuring conformance to National and International standards for energy conservation and environment preservation.

ENERGY EFFICIENT MOTORS

Crompton Greaves has now developed a complete family of high efficiency motors confirming to Eff level 1 standards of IEEEMA: 19-2000 and other applicable standards in Europe and rest of the world.

These motors are available in TEFC construction for use in safe areas and also in flameproof enclosure for use in Hazardous areas.

Special design features:

Higher efficiencies are achieved by following special features:

- Low loss special grade of thinner laminations. This reduces the iron loss even at partial loads.
- Thicker conductors and more copper contents reduce copper loss due lower resistance.
- Longer core length, reduced and uniform air gap between stator and rotor to reduce stray losses.
- Special design of fan and fan cover to reduce windage losses.

Benefits

Improved efficiency is available from 60 % to 100 % load. The eff curve is almost flat resulting in higher energy savings as in most of the cases the motor is not always fully loaded.

The special design features also result in lower operating temperatures which enhance the life of motor and reduce the maintenance costs.

These motors have inherently low noise and vibration and help in conservation of environment.

Crompton Greaves energy efficient motors offer an additional feature which no other manufacturer offers.

These motors are with highest power factor in the industry due the special exclusive designs available with Crompton Greaves.

The higher power factor reduces the currents in the cables supplying power to motor and this reduces cable loss, improving the system efficiency sometimes by even 2 %.

Sometimes this allows even a lower cable size saving tremendously on capital costs. Saving is also made by reducing capacitors required to improve power factor.

Manufacturing range:

Efficiency Level 1

- 0.37 kW to 450 kW, (2 pole to 8 pole)
- Frame sizes: 71 to 355 for TEFC
- 80 to 315 for Flame proof
- The entire range is available in IEC frames sizes (metric range) and also in NEMA frames

Conform to following standards:

- IEEEMA: 19-2000
- IS 12615
- IS 325-1998 & IEC 34
- NEMA EPACT EFFICIENCY VALUES (for NEMA motors)

IEEEMA 19-2000 standard covers kW ratings only up to 160kW. However we are offering energy efficient motors up to 450 kW.

IMPORTANT OF ENERGY EFFICIENCY:

Growing cost of energy calls for power saving at each possible step of manufacturing. Electric motor driven systems used in industrial processes consume more than 70 percent of electricity used in industry, hence any possible technology is being applied for achieving highest possible efficiency values.

Efficiency measurement of an electric motor:

The efficiency of an electric motor is determined by the amount of useful power it produces compared to the amount of energy required to operate it. The figure below illustrates how a Crompton Greaves Energy efficient motors effectively turns 1000 units of electrical power into mechanical power.

Efficiency measurement of an electric motor:

The efficiency of an electric motor is determined by the amount of useful power it produces compared to the amount of energy required to operate it. The figure below illustrates how a Crompton Greaves Energy efficient motor effectively turns 1000 units of electrical power into mechanical power.

Since motor efficiency is commonly expressed as a percentage. Efficiency in this case would be 94%.

![Diagram of energy efficiency calculation]

60 units

Inputs

1000 units

MOTOR

Output

940 units

OUTPUT = INPUT - LOSSES
Applications:
The benefits of using these motors are maximum in continuous duty applications like Blowers, Compressors, Fans, Exhausters, Pumps etc.

Best performance even at partial loads:
In many applications the load factor of the motor will range between 60% to 80%. The efficiency curve of standard motor is dropping in nature i.e there is a sharp fall in efficiency at partial loads. But the energy efficient motors have a flat efficiency curve and hence the fall in efficiency is marginal. Thus energy saving is significant even in part loads.

Energy cost for a 15 years usage at Rs 4.5 kWH is staggering 14.10 lacs as compared to buying cost of Rs 7215/- . Also the energy KWH rate is likely to only go up in future.
If we compare initial purchase price of the motor with the cost of energy it uses over its working lifetime, the initial cost represents less than two percent of its lifetime cost in most of the cases.

Comparison of initial & life time costs

So it makes a great deal of sense to choose an eff1 level motor whenever a motor is needed to drive any applications.
Combine this with usual Crompton greaves motors reliability, wide service network (over 180 service points all over India) and the wise choice is Crompton greaves EFF1 motor.

Assessing cost effectiveness of energy efficient motors:
Savings:
Savings are calculated as follows:

\[
\text{Kw} - \text{output of motor in kw} \\
\text{E1} - \text{efficiency of standard motor} \\
\text{E2} - \text{efficiency of energy efficient motor} \\
\]

\[
X = \left(\frac{\text{Kw}}{\text{E1}} - \frac{\text{Kw}}{\text{E2}} \right)
\]

\[
\text{Savings} = X \times \text{working hours} \times \text{working days} \times \text{tariff}
\]

EXAMPLE
3.7 kW 4 pole motor in frame ND112M
Std motor eff2: 85% eff1 88.3%
Price eff2: Rs 7215/- eff1: Rs 9380/-
Working hours 16 per day, working days 300 in a year, power rate Rs 4.5 per KWH

\[
X = 0.1626 \\
\text{RS Savings} = 0.1626 \times 15 \times 300 \times 4.5 = 3514/- \text{RS per year}
\]
Extra investment RS 2615/-
Payback period = 9 months
<table>
<thead>
<tr>
<th>OUTPUT K/W</th>
<th>HP</th>
<th>FRAME</th>
<th>FL RPM</th>
<th>FL AMPS</th>
<th>FL KT/m</th>
<th>FL 3/4 LOAD</th>
<th>FL 1/2 LOAD</th>
<th>POWER CONSUMPTION</th>
<th>DOL CONSUMPTION</th>
<th>POT</th>
<th>GD</th>
<th>NET WT KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37</td>
<td>0.50</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>0.65</td>
<td>1.00</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>0.75</td>
<td>1.50</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>1.10</td>
<td>2.00</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>1.50</td>
<td>3.00</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>2.20</td>
<td>4.00</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>3.70</td>
<td>5.00</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>5.50</td>
<td>7.50</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>7.50</td>
<td>10.0</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>9.3</td>
<td>12.5</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>11.5</td>
<td>15</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>SD71</td>
<td>2820</td>
<td>0.95</td>
<td>0.13</td>
<td>70.2</td>
<td>70.2</td>
<td>68.2</td>
<td>0.79</td>
<td>0.72</td>
<td>0.60</td>
<td>250</td>
</tr>
</tbody>
</table>
ENERGY EFFICIENT MOTORS

<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>KW</th>
<th>HP</th>
<th>FRAME SIZE</th>
<th>FL RPM</th>
<th>FL AMPS</th>
<th>FL KG-m</th>
<th>EFFICIENCY (%)</th>
<th>POWER FACTOR</th>
<th>OIL STG.%</th>
<th>STG.T</th>
<th>STG.G</th>
<th>POT % FLT</th>
<th>GO2 KG</th>
<th>NET WT. KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>30</td>
<td>2</td>
<td>ND180M</td>
<td>2930</td>
<td>40.0</td>
<td>7.21</td>
<td>92.2</td>
<td>92.2</td>
<td>0.83</td>
<td>0.60</td>
<td>0.72</td>
<td>225</td>
<td>275</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>ND180S</td>
<td>39.0</td>
<td>14.53</td>
<td>92.5</td>
<td>92.6</td>
<td>0.84</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND200L</td>
<td>975</td>
<td>40.0</td>
<td>21.98</td>
<td>91.8</td>
<td>92.6</td>
<td>0.84</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND225S</td>
<td>725</td>
<td>45.0</td>
<td>29.56</td>
<td>90.2</td>
<td>92.2</td>
<td>0.75</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>2</td>
<td>ND220L</td>
<td>2650</td>
<td>50.0</td>
<td>9.91</td>
<td>92.9</td>
<td>90.9</td>
<td>0.90</td>
<td>0.89</td>
<td>0.87</td>
<td>200</td>
<td>250</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>ND200L</td>
<td>1475</td>
<td>50.0</td>
<td>19.81</td>
<td>93.2</td>
<td>91.2</td>
<td>0.89</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND225S</td>
<td>980</td>
<td>50.0</td>
<td>29.82</td>
<td>92.6</td>
<td>90.6</td>
<td>0.85</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND250M</td>
<td>725</td>
<td>61.0</td>
<td>39.76</td>
<td>91.5</td>
<td>89.5</td>
<td>0.75</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>2</td>
<td>ND200L</td>
<td>2950</td>
<td>61.0</td>
<td>12.22</td>
<td>93.3</td>
<td>91.3</td>
<td>0.90</td>
<td>0.89</td>
<td>0.87</td>
<td>200</td>
<td>250</td>
<td>0.89</td>
</tr>
<tr>
<td>4</td>
<td>ND225S</td>
<td>1480</td>
<td>62.0</td>
<td>24.35</td>
<td>93.6</td>
<td>91.6</td>
<td>0.89</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND250M</td>
<td>980</td>
<td>60.0</td>
<td>36.77</td>
<td>93.0</td>
<td>91.0</td>
<td>0.84</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND290S</td>
<td>725</td>
<td>75.0</td>
<td>49.00</td>
<td>91.9</td>
<td>89.9</td>
<td>0.75</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>2</td>
<td>ND225S</td>
<td>2950</td>
<td>71.0</td>
<td>14.83</td>
<td>93.7</td>
<td>91.7</td>
<td>0.94</td>
<td>0.92</td>
<td>0.88</td>
<td>225</td>
<td>275</td>
<td>0.91</td>
</tr>
<tr>
<td>4</td>
<td>ND225S</td>
<td>1480</td>
<td>75.0</td>
<td>29.61</td>
<td>93.9</td>
<td>91.9</td>
<td>0.89</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND225S</td>
<td>2950</td>
<td>725</td>
<td>44.72</td>
<td>93.4</td>
<td>91.4</td>
<td>0.85</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND250M</td>
<td>980</td>
<td>79.0</td>
<td>60.46</td>
<td>92.4</td>
<td>90.4</td>
<td>0.75</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>2</td>
<td>ND250M</td>
<td>2950</td>
<td>87.0</td>
<td>18.13</td>
<td>94.0</td>
<td>92.0</td>
<td>0.94</td>
<td>0.92</td>
<td>0.88</td>
<td>175</td>
<td>225</td>
<td>2.79</td>
</tr>
<tr>
<td>6</td>
<td>ND250M</td>
<td>1475</td>
<td>91.0</td>
<td>35.32</td>
<td>94.2</td>
<td>92.2</td>
<td>0.89</td>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND280M</td>
<td>980</td>
<td>95.0</td>
<td>54.66</td>
<td>93.8</td>
<td>91.8</td>
<td>0.86</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>2</td>
<td>ND250M</td>
<td>2950</td>
<td>123.0</td>
<td>24.55</td>
<td>94.6</td>
<td>92.6</td>
<td>0.90</td>
<td>0.88</td>
<td>0.84</td>
<td>225</td>
<td>275</td>
<td>7.14</td>
</tr>
<tr>
<td>4</td>
<td>ND225S</td>
<td>1480</td>
<td>122.0</td>
<td>49.36</td>
<td>94.7</td>
<td>92.7</td>
<td>0.90</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND315S</td>
<td>697</td>
<td>129.0</td>
<td>74.01</td>
<td>94.2</td>
<td>92.2</td>
<td>0.86</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND280M</td>
<td>725</td>
<td>153.0</td>
<td>98.72</td>
<td>93.5</td>
<td>91.5</td>
<td>0.73</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>120</td>
<td>2</td>
<td>ND280M</td>
<td>2975</td>
<td>146.0</td>
<td>29.47</td>
<td>95.0</td>
<td>93.0</td>
<td>0.90</td>
<td>0.88</td>
<td>0.84</td>
<td>225</td>
<td>275</td>
<td>8.12</td>
</tr>
<tr>
<td>4</td>
<td>ND280M</td>
<td>1480</td>
<td>145.0</td>
<td>59.23</td>
<td>95.0</td>
<td>93.0</td>
<td>0.90</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND315S</td>
<td>987</td>
<td>154.0</td>
<td>68.81</td>
<td>94.5</td>
<td>92.5</td>
<td>0.66</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND315L</td>
<td>740</td>
<td>178.0</td>
<td>119.46</td>
<td>94.0</td>
<td>92.0</td>
<td>0.75</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>150</td>
<td>2</td>
<td>ND315S</td>
<td>2975</td>
<td>171.0</td>
<td>36.13</td>
<td>95.0</td>
<td>93.0</td>
<td>0.94</td>
<td>0.91</td>
<td>0.84</td>
<td>200</td>
<td>250</td>
<td>6.63</td>
</tr>
<tr>
<td>4</td>
<td>ND315S</td>
<td>1488</td>
<td>172.0</td>
<td>72.00</td>
<td>95.2</td>
<td>93.2</td>
<td>0.92</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND315M</td>
<td>987</td>
<td>180.0</td>
<td>108.55</td>
<td>94.6</td>
<td>92.6</td>
<td>0.86</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND315L</td>
<td>740</td>
<td>216.0</td>
<td>144.78</td>
<td>94.3</td>
<td>93.2</td>
<td>0.75</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>180</td>
<td>2</td>
<td>ND315M</td>
<td>2985</td>
<td>205.0</td>
<td>43.36</td>
<td>95.3</td>
<td>93.3</td>
<td>0.94</td>
<td>0.90</td>
<td>0.82</td>
<td>225</td>
<td>275</td>
<td>9.12</td>
</tr>
<tr>
<td>4</td>
<td>ND315M</td>
<td>1488</td>
<td>200.0</td>
<td>86.40</td>
<td>95.5</td>
<td>93.5</td>
<td>0.92</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND315L</td>
<td>985</td>
<td>225.0</td>
<td>130.53</td>
<td>94.9</td>
<td>92.9</td>
<td>0.86</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ND315L</td>
<td>740</td>
<td>250.0</td>
<td>173.74</td>
<td>94.7</td>
<td>92.7</td>
<td>0.75</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>215</td>
<td>2</td>
<td>ND315L</td>
<td>2975</td>
<td>248.0</td>
<td>52.38</td>
<td>95.5</td>
<td>93.5</td>
<td>0.94</td>
<td>0.92</td>
<td>0.90</td>
<td>175</td>
<td>225</td>
<td>16.37</td>
</tr>
<tr>
<td>4</td>
<td>ND315L</td>
<td>1490</td>
<td>258.0</td>
<td>104.59</td>
<td>95.8</td>
<td>93.8</td>
<td>0.90</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ND315L</td>
<td>990</td>
<td>272.0</td>
<td>157.41</td>
<td>95.1</td>
<td>93.1</td>
<td>0.86</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STG.C = Starting Current; STG.T = Starting Torque
NOTE: All performance figures are subject to tolerances as per IS 325 - 1996
EFFICIENCY VALUE AT 60% LOAD SHALL BE SAME AS THAT AT 100% & 75% LOAD.
Performance figures are as per IECMA : 19-2000, EFFICIENCY LEVEL 1
For kW above 160, please refer to Division / Branch Office.
*** These ratings are with Class F Temperature rise.
Voltage : 415 V +/- 10%, Frequency : 50 Hz +/- 5%
ENERGY EFFICIENT MOTORS

OUTLINE DIMENSION DRAWING FOR 3 PHASE SQUIRREL CAGE TEFC FOOT MOUNTED INDUCTION MOTORS CONFORMING TO IS:1231-1974

CABLE DIVIDING BOX PROVIDED FOR ND225 ONWARDS (OPTIONAL)

X-THREADED CENTRE HOLES
AS PER IS:2540-1963

CABLE ENTRY SCREWED FOR ‘KK’ BSC THREAD

AUX. TERM FOR SPACE HEATER/ THERMISTOR ABOVE 225-FRAME ONLY

4-HOLES ‘K’ DIA

EARTHING TERMINALS OF M4 FOR ND90-132, M8 FOR ND160-225, M12 FOR ND250-315 FRAME ON BOTH SIDES

<table>
<thead>
<tr>
<th>FRAME</th>
<th>FOOT FIXING</th>
<th>SHAFT AND KEYWAY/OVERALL (MAX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>ND90</td>
<td>125</td>
<td>100</td>
</tr>
<tr>
<td>ND100S</td>
<td>140</td>
<td>100</td>
</tr>
<tr>
<td>ND100L</td>
<td>160</td>
<td>140</td>
</tr>
<tr>
<td>ND112M</td>
<td>150</td>
<td>140</td>
</tr>
<tr>
<td>ND132S</td>
<td>216</td>
<td>140</td>
</tr>
<tr>
<td>ND132M</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>ND160N</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>ND160N</td>
<td>315</td>
<td>315</td>
</tr>
<tr>
<td>ND200L</td>
<td>315</td>
<td>315</td>
</tr>
<tr>
<td>ND225S</td>
<td>356</td>
<td>286</td>
</tr>
<tr>
<td>ND225M</td>
<td>356</td>
<td>286</td>
</tr>
<tr>
<td>ND250S</td>
<td>457</td>
<td>368</td>
</tr>
<tr>
<td>ND280M</td>
<td>457</td>
<td>368</td>
</tr>
<tr>
<td>ND315S</td>
<td>508</td>
<td>406</td>
</tr>
<tr>
<td>ND315M</td>
<td>457</td>
<td>368</td>
</tr>
<tr>
<td>ND315L</td>
<td>508</td>
<td>406</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABOVE 200 FRAMES</th>
<th>FRAME</th>
<th>D. TOL</th>
<th>E</th>
<th>ED</th>
<th>F. TOL</th>
<th>GD. TOL</th>
<th>D</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND 75</td>
<td>55.030/60.011</td>
<td>110</td>
<td>800</td>
<td>18.0(15.957)</td>
<td>10.0(9.1)</td>
<td>49.0(48.8)</td>
<td>825</td>
<td>850</td>
</tr>
<tr>
<td>ND 250</td>
<td>60.030/60.011</td>
<td>140</td>
<td>110</td>
<td>18.0(17.957)</td>
<td>11.0(10.0)</td>
<td>53.0(52.8)</td>
<td>940</td>
<td>940</td>
</tr>
<tr>
<td>MACHINES RUNNING</td>
<td>ND 250</td>
<td>60.030/60.011</td>
<td>140</td>
<td>110</td>
<td>18.0(17.957)</td>
<td>11.0(10.0)</td>
<td>53.0(52.8)</td>
<td>940</td>
</tr>
<tr>
<td>ND 280</td>
<td>65.030/65.011</td>
<td>140</td>
<td>110</td>
<td>18.0(17.957)</td>
<td>11.0(10.0)</td>
<td>55.0(57.8)</td>
<td>1150</td>
<td>1200</td>
</tr>
<tr>
<td>AT 3000 RPM HAVE</td>
<td>ND 315</td>
<td>70.030/70.011</td>
<td>140</td>
<td>110</td>
<td>20.0(19.948)</td>
<td>12.0(11.9)</td>
<td>52.5(62.3)</td>
<td>-</td>
</tr>
<tr>
<td>SMALLER SHAFTS</td>
<td>ND 315</td>
<td>70.030/70.011</td>
<td>140</td>
<td>110</td>
<td>20.0(19.948)</td>
<td>12.0(11.9)</td>
<td>52.5(62.3)</td>
<td>-</td>
</tr>
<tr>
<td>AS SHOWN HERE</td>
<td>ND 315</td>
<td>70.030/70.011</td>
<td>140</td>
<td>110</td>
<td>20.0(19.948)</td>
<td>12.0(11.9)</td>
<td>52.5(62.3)</td>
<td>-</td>
</tr>
</tbody>
</table>
NORTHERN REGION
New Delhi:
Vandana 11, Tolstoy Marg,
New Delhi-110 001.
Tel.: (011) 23352161, 23352162
Jaipur:
Church Road,
P.O. Box No. 173,
Jaipur-302001.
Tel.: (0141) 2376918, 2376307
Jalandhar:
416-417, 3rd Floor,
Prestige Chambers, GT Road,
Jalandhar 144 001.
Tel.: (0181) 2223801, 2459467
Lucknow:
3rd Floor, Saran Chambers II,
5, Park Road, Lucknow-226001.
Tel.: (0522) 2223944, 2237007/8

EASTERN REGION
Kolkata:
50, Chowringhee Road,
Kolkata - 700 071.
Tel.: (033) 22826915-85
Bhubaneswar:
Janpath Tower, 3rd Floor,
Ashok Nagar, Unit II,
Bhubaneswar-751009.
Tel.: (0674) 2931129, 2931429,
2931277, 2930847
Patna:
Eastern Logistics,
Behind Mithila Motors,
Exhibition Road, Patna-800 001
Tel.: (0612) 2212791, 2624757
Guwahati:
533, K. C. Chaudhury Road,
Satitari, Guwahati-781008
Tel.: (0361) 2643830, 265018

WESTERN REGION
Ahmedabad:
908-910, Sakar II,
Near Ellis Bridge Police Station,
Ahmedabad-380006.
Tel.: (079) 26587129,
2652780, 2657238.
Mumbai:
Kanjur Marg (East),
Mumbai -400 042
Tel.: (022) 26553000
Pune:
Premium Point, 4th Floor,
Opp. Modern High School,
Jangali Maharaj Road, Pune 5.
Tel.: (020) 26534675-77
Indore:
103-B, Apollo Trade Centre,
28, Rajpar Kothi, Mumbai-Agra Road,
Indore-452001.
Tel.: (0371) 2498268, 2498376

Nagpur:
3, West High Court Road,
Lal Bahadur Shastri Chowk,
Dhamanpeth, Nagpur-440010.
Tel.: (0712) 2531271, 2560870-71

SOUTHERN REGION
Bangalore: 1st Floor,
Jantar Mantar Towers,
560049, Banerghetta Road,
Bilekahalli, Bangalore-560 076
Tel.: (080) 51391908/909
Chennai:
3A, MGR Salai (K. H. Road),
Nungambakkam,
Chennai -600 034
Tel.: (044) 28257375
Cochin:
Cherupushpam Building,
5th Floor, 300-6
Shannon Road,
Ernakulam, Cochin-682031.
Tel.: (0484) 2370865-3, 2360240
Secunderabad:
4th Floor, Minerva House, 94,
Sarojini Devi Road,
Secunderabad-500003.
Tel.: (040) 27847270, 27847090

Service Centres
Vandana, 11,
Tolstoy Marg,
New Delhi 110 001.
Tel.: (011) 23352161 / 62

21, R.N. Mukherjee Road,
Kolkata -700001
Tel.: (033) 22469160
Fax: (033) 22469737

Cio Geologics Pvt. Ltd,
Bldg. No. D & E, Chamunda Complex,
Thane Bhivandi Road, Kasheel,
Bhivandi 400 421.
Tel.: (022) 35558670

3A, MGR Salai (K. H. Road),
Nungambakkam,
Chennai - 600 034
Tel.: (044) 28257375